深度学习+感知机
深度学习+感知机
- 1感知机
- 总结
- 2多层感知机
- 1XOR
- 2激活函数
- 3多类分类
- 总结
- 3代码实现
1感知机
是个很简单的模型,是个二分类的问题。
感知机(perceptron)是Frank Rosenblatt在1957年提出的一种人工神经网络,被视为一种最简单形式的前馈神经网络,同时也是神经网络与支持向量机的基础。感知机是一种二元线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机利用梯度下降法对损失函数进行极小化,提出可将训练数据进行线性划分的分离超平面,从而求得感知机模型。





总结
感知机是一个二分类模型,是最早的AI模型之一。
它的求解算法等价于使用批量大小为1的梯度下降。
它不能拟合 XOR函数,导致的第一次 A寒冬。
2多层感知机
1XOR
在深度学习中,XOR(异或)函数是一个重要的概念,经常用于解释和演示神经网络的原理和能力。XOR函数是一个二元逻辑函数,其输出仅当输入的两个二进制位不同时才为1,否则为0。
对于简单的线性模型,如逻辑回归或感知机,它们无法直接学习XOR函数,因为XOR函数在输入空间中不是线性可分的。这意味着不能通过一条直线(或一个超平面)来分隔XOR函数的四个可能输入。然而,通过引入隐藏层(非线性层),神经网络可以学习并表示XOR函数。这是神经网络能够学习复杂函数和非线性关系的关键。
具体来说,一个具有至少一个隐藏层的前馈神经网络可以学习并模拟XOR函数。隐藏层的神经元可以捕获输入数据中的非线性关系,并将这些关系传递给输出层。通过调整网络中的权重和偏置,神经网络可以逐渐逼近XOR函数的输出。
因此,XOR函数在深度学习中常常被用作一个示例,来展示神经网络如何处理非线性问题和逼近复杂函数的能力。通过学习和理解XOR函数,可以更深入地理解神经网络的原理、结构和工作方式

2激活函数
激活函数(Activation Function)在人工神经网络的神经元上运行,负责将神经元的输入映射到输出端。激活函数对于人工神经网络模型去学习、理解复杂和非线性的函数起到了至关重要的作用。它们将非线性特性引入到网络中,使得神经网络可以任意逼近任何非线性函数。
以下是几种常见的激活函数:
Sigmoid函数:它的输出取值范围是(0, 1)。这个函数对中央区的信号增益较大,对两侧区的信号增益小,从而在信号的特征空间映射上具有良好的效果。然而,使用sigmoid激活函数可能会造成神经网络的梯度消失和梯度爆炸问题。
Tanh函数:它的输出取值范围是(-1, 1)。Tanh函数的图像与sigmoid函数相似,但也具有梯度消失的缺点,并且计算相对复杂。
ReLU函数:其解析式为out = max(0, x)。当输入x<0时,输出为0;当x>0时,输出为x。ReLU函数使网络更快速地收敛,并且不会饱和,可以对抗梯度消失问题。
Leaky ReLU函数:该函数将ReLU的负区域也设成有梯度的斜线,以解决ReLU在负值区域的“死亡ReLU”问题。
除了上述的几种激活函数,还有其他多种激活函数,如ELU、PReLU、RReLU、Maxout等,它们各有特点,适用于不同的应用场景。
总的来说,选择哪种激活函数取决于具体的应用场景和需求。在实际应用中,可能需要通过试验和调整来找到最适合的激活函数。



激活函数和目标函数在深度学习和机器学习的神经网络模型中各有其独特的作用,它们之间的主要区别体现在以下几个方面:
功能与目的:激活函数的主要作用是为神经网络提供非线性建模能力,通过分层的非线性映射学习,使得网络可以拟合各种复杂的函数。这对于处理现实世界中的复杂数据和问题是至关重要的。而目标函数(或称为损失函数)的主要目的是衡量模型预测结果与实际结果之间的差距,通过最小化这个差距,模型可以在训练过程中逐渐优化自身的参数,从而提高预测精度。
应用位置:激活函数通常被应用于神经网络的每一层,特别是在全连接层或卷积层之后,用于对输入数据进行非线性变换。而目标函数则主要在模型的训练阶段使用,用于计算模型预测结果与实际结果之间的误差,并据此更新模型的参数。
种类与选择:激活函数的种类很多,包括Sigmoid、Tanh、ReLU、Leaky ReLU等,每种函数都有其特定的应用场景和优缺点。选择哪种激活函数通常取决于具体任务和数据特性。而目标函数的种类也较多,如均方误差、交叉熵等,选择哪种目标函数也取决于具体的任务需求。
总的来说,激活函数和目标函数在神经网络中各自扮演着不同的角色,共同协作以实现模型的优化和预测能力的提升。激活函数负责引入非线性特性,使网络能够拟合复杂函数;而目标函数则负责衡量模型预测结果与实际结果的差距,并指导模型的参数更新。
3多类分类



总结

多层感知机(MLP,Multilayer Perceptron)是一种人工神经网络(ANN,Artificial Neural Network)。它除了输入输出层之外,中间可以有多个隐藏层,其中最简单的多层感知机结构仅包含一个隐藏层,形成三层的网络结构。
多层感知机的核心特性在于其层与层之间的全连接性,即每一层的每一个节点都与下一层的每一个节点连接。这种连接模式使得多层感知机能够模拟复杂的非线性关系,并处理各种模式识别和数据分类任务。
在多层感知机中,隐藏层和输出层都具备计算加权和以及通过激活函数处理的功能。激活函数的使用是多层感知机的关键,通过在隐藏层中加入非线性激活函数,多层感知机能够实现对数据的非线性化处理,从而大幅提升其处理复杂问题的能力。常见的激活函数包括ReLU、sigmoid和tanh等。
多层感知机在训练过程中,通过反向传播算法(Backpropagation)来更新网络中的权重和偏置项,以最小化预测结果与实际结果之间的误差。这种训练过程使得多层感知机能够逐渐学习到数据的内在规律和模式,从而实现对新数据的准确预测和分类。
由于多层感知机具有强大的学习和处理能力,它在多个领域都有广泛的应用,如图像识别、语音识别、自然语言处理、数据挖掘等。通过构建和训练多层感知机模型,人们可以解决各种复杂的实际问题,并推动人工智能技术的发展。
多层感知机目前的应用非常广泛。作为人工神经网络的一种,多层感知机在机器学习和深度学习的许多领域中都发挥着重要作用。其强大的学习和处理能力使得它成为处理复杂非线性问题和模式识别任务的首选模型。
多层感知机可以应用于图像识别、语音识别、自然语言处理、数据挖掘等多个领域。在图像识别中,多层感知机可以通过学习图像的特征表示来进行准确的分类和识别;在语音识别中,它可以识别和理解人类的语言;在自然语言处理中,多层感知机可以用于文本分类、情感分析、机器翻译等任务;在数据挖掘中,它可以用于预测和分析大量的数据。
此外,随着深度学习技术的不断发展,多层感知机也在不断地进行改进和优化,以更好地适应各种复杂任务的需求。因此,可以说多层感知机目前的应用非常广泛,并且在未来仍将继续发挥重要作用。
3代码实现



简洁实现:
相关文章:
深度学习+感知机
深度学习感知机 1感知机总结 2多层感知机1XOR2激活函数3多类分类总结 3代码实现 1感知机 是个很简单的模型,是个二分类的问题。 感知机(perceptron)是Frank Rosenblatt在1957年提出的一种人工神经网络,被视为一种最简单形式的前馈神经网络&…...
爬虫练习:获取某招聘网站Python岗位信息
一、相关网站 二、相关代码 import requests from lxml import etree import csv with open(拉钩Python岗位数据.csv, w, newline, encodingutf-8) as csvfile:fieldnames [公司, 规模,岗位,地区,薪资,经验要求]writer csv.DictWriter(csvfile, fieldnamesfieldnames)writer…...
Java对接腾讯云直播示例
首先是官网的文档地址 云直播 新手指南 可以发现它这个主要是按流量和功能收费的 价格总览 流量这里还只收下行的费用,就是只收观看消耗的流量费 其它的收费就是一些增值业务费 (包括直播转码、直播录制、直播截图、直播审核、智能鉴黄、实时监播、移动直…...
free pascal 调用 C#程序读 Freeplane.mm文件,生成测试用例.csv文件
C# 请参阅:C# 用 System.Xml 读 Freeplane.mm文件,生成测试用例.csv文件 Freeplane 是一款基于 Java 的开源软件,继承 Freemind 的思维导图工具软件,它扩展了知识管理功能,在 Freemind 上增加了一些额外的功能&#x…...
在Blender中清理由Instant-NGP等几何学习技术生成的网格
使用布尔运算: 创建一个大的立方体或其他简单几何体包裹住全部网格。使用布尔修改器对两个网格进行“差集”运算。这将移除超出包裹体之外的多余网格部分。 手动选择并删除: 进入编辑模式(按Tab键)。按A键取消选择所有顶点。按B键并拖动以选择您想要删除…...
【重要公告】BSV区块链上线TypeScript SDK,未来将支持更多开发语言
发表时间:2024年2月21日 BSV区块链协会宣布上线JavaScript和TypeScript SDK(即“标准开发工具包”)。TypeScript SDK旨在为开发者提供新版统一核心代码库,以便利开发者在BSV区块链上开发能够任意扩容的应用程序。新上线的SDK替…...
【工具使用-VScode】VScode如何设置空格和tab键显示
一,简介 在提交代码的时候,行末尾的tab和空格不符合规范,但是如果在vscode中不显示tab和空格的话,不能及时的查看到并改正,导致提交代码之后还需要再次进行修改,效率比较低。 代码编辑界面如图所示&#…...
【原理图PCB专题】Cadence 17.4版本原理图及PCB Mudule复用
在我们设计复杂板卡的时候,往往会遇到一部分电路被反复使用的情况。虽然使用复制黏贴我们很快的做出相同的设计,但由于不同工程师能力水平不同,有时可能存在部分电路被漏掉导致重大异常。尤其对于大规模复杂设计,如果设计者浪费时间制作相同模块上,这无疑是对于工程师精力…...
llama-index调用qwen大模型实现RAG
背景 llama-index在实现RAG方案的时候多是用的llama等英文大模型,对于国内的诸多模型案例较少,本次将使用qwen大模型实现llama-index的RAG方案。 环境配置 (1)pip包 llamaindex需要预装很多包,这里先把我成功的案例…...
基于springboot的医院信息管理系统(程序+代码+文档)
** 🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目,希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅** 一、研究背景…...
【环境配置】Linux MySQL8 忘记密码解决措施
本片博客介绍 Linux 操作系统 Ubuntu 下,MySQL8 忘记密码怎么重新设置,笔者亲测有效,分享给大家。 查看 MySQL 版本 $ mysql --version停止 MySQL 服务器,并查看状态是否变更为 Server shutdown complete # 等价命令sudo syste…...
MySQL-锁:共享锁(读)、排他锁(写)、表锁、行锁、意向锁、间隙锁,锁升级
MySQL-锁:共享锁(读)、排他锁(写)、表锁、行锁、意向锁、间隙锁 共享锁(读锁)、排他锁表锁行锁意向锁间隙锁锁升级 MySQL数据库中的锁是控制并发访问的重要机制,它们确保数据的一致性…...
docker 使用官方镜像搭建 PHP 环境
一、所需环境: 1、PHP:7.4.33-fpm 的版本 2、Nginx:1.25.1 的版本 3、MySQL: 5.7 的版本 4、Redis:7.0 的版本 1.1、拉取官方的镜像 docker pull php:7.4.33-fpm docker pull nginx:1.25.1 docker pull mysql:5.7 do…...
STM32CubeIDE基础学习-STM32CubeIDE软件偏好设置
STM32CubeIDE基础学习-STM32CubeIDE软件偏好设置 文章目录 STM32CubeIDE基础学习-STM32CubeIDE软件偏好设置前言第1章 设置字体颜色第2章 设置字体大小第3章 设置代码区背景颜色总结 前言 编程软件环境最好就设置一个自己喜欢的界面进行显示,这样看起来会比较舒服些…...
【《高性能 MySQL》笔记】性能优化
学习知识最快最好的方式就是问对问题。 本文将通过“问正确的问题”的方式循序渐进地深入总结性能优化相关知识。 性能优化基础 Q1:什么是“性能”? 即响应时间(RT,Response Time),完成某个任务所需要的时间度量。 Q2:什么是“性能优化”? 性能优化为在一定工作负…...
Spring AOP底层原理
目录 代理模式 静态代理 动态代理 1. JDK动态代理 创建⼀个代理对象并使用 2. CGLIB动态代理 SpringAOP底层原理面试 代理模式 Spring AOP是基于动态代理模式来实现的 代理模式:静态代理模式动态代理模式 代理模式, 也叫委托模式。 定义:为其…...
proteus8.9 示波器放大
proteus8.9 示波器放大** 1. 打开放大:Windows徽标键 加号 2. 取消放大:Windows徽标键 ESC...
代码随想录训练营第41天 | 动态规划:01背包理论基础、动态规划:01背包理论基础(滚动数组)、LeetCode 416.分割等和子集
动态规划:01背包理论基础 文章讲解:代码随想录(programmercarl.com) 视频讲解:带你学透0-1背包问题!_哔哩哔哩_bilibili 动态规划:01背包理论基础(滚动数组) 文章讲解:代码随想录(…...
1908_Arm Cortex-M3的实现
1908_Arm Cortex-M3的实现 全部学习汇总: g_arm_cores: ARM内核的学习笔记 (gitee.com) 这是第一次看一份这样的手册,之前的MCU编程基本上就是专注于软件接口方面。而OS等方面的一些功能基本上都是用了现成的解决方案,因此也就没有过多的关注…...
编程笔记 html5cssjs 005 小学数学四则运算练习
编程笔记 html5&css&js 005 小学数学四则运算练习 一、代码二、解释 这段代码定义了一个页面,用于小学数学四则运算的练习。这可能有点难,实际如果需要可以通过更改代码来达到要求。 一、代码 <!DOCTYPE html> <html lang"zh&quo…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
