当前位置: 首页 > news >正文

递归神经网络 (RNN) 及其变体 LSTM (长短期记忆) 和 GRU (门控循环单元)

递归神经网络(RNN, Recurrent Neural Networks)是一类用于处理序列数据的神经网络,特别适合于时间序列数据、语音、文本等连续数据的处理。RNN之所以独特,是因为它们在模型内部维持一个隐藏状态,该状态理论上可以捕获到目前为止所观察到的所有信息。然而,标准RNN在处理长序列时面临梯度消失或梯度爆炸的问题,这限制了它们捕获长期依赖的能力。为了克服这些限制,提出了两种主要的RNN变体:长短期记忆网络(LSTM)和门控循环单元(GRU)。

递归神经网络(RNN)

基本原理

RNN通过在每一个时间步上接收输入并更新其内部状态来工作,这个内部状态是对之前步骤的记忆。基本RNN有一个非常简单的结构,包括一个隐藏层和一个输出层。隐藏层在不同时间步上对同一输入进行处理时,会保留一个状态向量,这个状态向量包含了之前时间步的信息。

问题

虽然RNN理论上可以处理任何长度的序列,但在实践中,当处理长序列数据时,会遇到梯度消失或梯度爆炸的问题,这使得模型难以学习和保持长期的依赖关系。

长短期记忆网络(LSTM)

设计

LSTM是一种特殊的RNN,旨在解决标准RNN无法处理长期依赖的问题。LSTM引入了三个门(输入门、遗忘门和输出门)和一个细胞状态,这些机制帮助它在长序列中保持和更新记忆。

  • 输入门:决定哪些新的信息被添加到细胞状态中。
  • 遗忘门:决定哪些旧的信息需要从细胞状态中丢弃。
  • 输出门:决定细胞状态的哪一部分将被用在输出中。
优势

LSTM通过这些门结构有效地保持和更新长期和短期的记忆,使其能够捕获长距离的依赖关系。

门控循环单元(GRU)

设计

GRU是LSTM的一个变体,旨在简化LSTM的模型结构,同时保持LSTM处理长期依赖的能力。GRU合并了LSTM的遗忘门和输入门成为一个单独的更新门,并且将细胞状态和隐藏状态合并。

  • 更新门:决定保留多少之前的记忆信息。
  • 重置门:决定如何结合新的输入信息和之前的记忆信息。
优势

GRU相对于LSTM有更简单的结构,计算效率更高,训练时间更短,在很多任务中,GRU的表现与LSTM相似,有时甚至更好。

应用

RNN及其变体广泛应用于自然语言处理(NLP)、语音识别、时间序列预测等领域。它们能够处理和生成序列数据,使得它们非常适合于语言翻译、情感分析、文本生成、股票价格预测等任务。

总结而言,RNN及其变体LSTM和GRU是深度学习中处理序列数据的强大工具,通过引入记忆机制,它们能够学习到数据中的长期依赖关系,解决了传统RNN面临的挑战,为复杂序列任务的解决提供了有效的方法。

相关文章:

递归神经网络 (RNN) 及其变体 LSTM (长短期记忆) 和 GRU (门控循环单元)

递归神经网络(RNN, Recurrent Neural Networks)是一类用于处理序列数据的神经网络,特别适合于时间序列数据、语音、文本等连续数据的处理。RNN之所以独特,是因为它们在模型内部维持一个隐藏状态,该状态理论上可以捕获到…...

Redis的HyperLogLog原理介绍

Redis 的 HyperLogLog 数据结构实现了一种基于概率的基数估算算法,用于在占用极小内存的情况下估算一个集合中不重复元素(唯一值)的数量。以下是 HyperLogLog 算法的基本原理: 哈希函数: HyperLogLog 使用一个强散列函…...

微信小程序开发系列(二十六)·小程序运行机制(启动、前后台状态、挂起、销毁)和小程序更新机制

目录 1. 小程序运行机制 1.1 启动 1.2 前台和后台状态 1.3 挂起 1.4 销毁 2. 小程序更新机制 1. 小程序运行机制 1.1 启动 小程序启动可以分为两种情况,一种是冷启动,一种是热启动。 冷启动:如果用户首次打开,或小…...

百度信息流

计划: 流量选择 - 四个维度: 百度信息流 ; 整合了百度APP、WAP、PC各频道信息流和内容详情页的流量资源,广告和信息流内容资讯穿插展现;适合所有产品呢 好看视频; 汇集海量优质的视频内容,通过智能推荐算法为用户推送最适合的视频广告,视频广告在列表页有声…...

JAVA后端开发面试基础知识(十)——设计模式

创建型模式 创建型模式的作用就是创建对象,说到创建一个对象,最熟悉的就是 new 一个对象,然后 set 相关属性。但是,在很多场景下,我们需要给客户端提供更加友好的创建对象的方式,尤其是那种我们定义了类&am…...

红帽认证知识储备-Linux安全

Linux安全 内置安全机制 常见的系统用的centos中用的是SELinux,ubuntu用的是AppArmor,deepin什么都没用 SELINUX 定义 SELinux 是一个 Linux 内核安全模块,它增强了系统的安全性,通过实施强制访问控制策略来限制程序和用户对系…...

Rust 语言中的 dyn 关键字

在 Rust 中,&dyn Error 是一个指向动态类型的 Error trait 对象的引用。这里的 dyn 关键字用于表示一个动态分派的 trait 对象。动态分派允许你在运行时确定实际的对象类型,而不是在编译时。 dyn 关键字在 Rust 中用于替换早期版本中的 & 符号&…...

软件测试实战,Web项目网页bug定位详细分析总结(详全)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、前置条件 1&a…...

清除Mac OS上Xcode占用的空间

最近自己的Mac OS存储空间严重不足,想了一下,大概是从安装 Xcode 之后出现,在系统下通过 du 命令分析各目录大小,发现大概下面几个目录占用空间比较大,所以针对这几个名目录作了一下清理,释放了几十个G的空…...

开源的Java图片处理库介绍

在 Java 生态系统中,有几个流行的开源库可以用于图片处理。这些库提供了丰富的功能,如图像缩放、裁剪、颜色调整、格式转换等。以下是几个常用的 Java 图片处理库的介绍,包括它们的核心类、主要作用和应用场景,以及一些简单的例子…...

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor

arxiv 2023 08的论文 1 intro 1.1 人类流动性的独特性 人类流动性的独特特性在于其固有的规律性、随机性以及复杂的时空依赖性 ——>准确预测人们的行踪变得困难近期的研究利用深度学习模型的时空建模能力实现了更好的预测性能 但准确性仍然不足,且产生的结果…...

农场管理小程序|基于微信小程序的农场管理系统设计与实现(源码+数据库+文档)

农场管理小程序目录 目录 基于微信小程序的农场管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、用户信息管理 2、农场信息管理 3、公告信息管理 4、论坛信息管理 四、数据库设计 五、核心代码 七、最新计算机毕设选题推荐 八、源码获取&#x…...

【前端】vscode快捷键和实用Api整理

vscode的快捷键 创建a.html 生成模板 !回车 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" …...

抖音商家活动信息未在商详展示会有哪些处罚?

一、什么是「违规玩法-活动信息未在商详展示」? 什么是「违规玩法-活动信息未在商详展示」?由于当前平台未提供官方营销工具(例如免单、返现等)&#xff0c;但是创作者在进行商品推广(不仅限口播、画面、标题文案等)宣传该类营销玩法&#xff0c;未在商品商详页展示说明&…...

智慧公厕方案_智慧公厕解决方案_智慧公厕整体解决方案

一、什么是智慧公厕&#xff1f; 在现代城市化进程中&#xff0c;公共厕所是不可或缺的基础设施之一。然而&#xff0c;传统的公厕管理模式已经无法满足市民对高效、便捷厕所服务的需求。为了实现公共厕所的信息化管理&#xff0c;智慧公厕整体解决方案应运而生。智慧公厕具体…...

【Python】成功解决IndexError: list index out of range

【Python】成功解决IndexError: list index out of range &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订…...

对于两个独立随机变量X,Y, E(XY)=E(X)E(Y)

两个独立随机变量X&#xff0c;Y的期望分别是E(X), E(Y), 其乘积XY的期望是多少&#xff1f; 我们可以利用期望的性质来求得XY的期望。由于X、Y是独立随机变量&#xff0c;因此它们的协方差为0&#xff0c;即&#xff1a; cov(X, Y) E(XY) - E(X)E(Y) 0 因此&#xff0c; …...

以题为例 浅谈前缀和算法

前缀求和算法是什么 前缀和算法就是以空间去换取时间&#xff0c;可用于快速求数组的区间和&#xff0c;它可以用于一维数组和二维数组&#xff0c;但我现在只接触了一维数组并没有接触二维数组&#xff0c;所以在这里先介绍一维数组前缀和相关的知识 前缀和典型代码 for(int…...

【Python】进阶学习:OpenCV--一文详解cv2.namedWindow()

【Python】进阶学习&#xff1a;OpenCV–一文详解cv2.namedWindow() &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…...

【嵌入式】字体极限瘦身术:Fontmin在嵌入式UI中的魔法应用(附3500常用汉字)

&#x1f9d1; 作者简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟。提供嵌入式方向的学习指导、简历面…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...