当前位置: 首页 > news >正文

人工智能在信息系统安全中的运用

一、 概述

对于企业和消费者来讲,人工智能是非常有用的工具,那又该如何使用人工智能技术来保护敏感信息?通过快速处理数据并预测分析,AI可以完成从自动化系统到保护信息的所有工作。尽管有些黑客利用技术手段来达到自己的目的,但保护数据安全是人工智能技术的一个重要作用。我们越是利用人工智能技术来提供安全防护,就越有可能与高水准的黑客进行作战。img

人工智能在信息安全领域的应用十分广泛,包括生物特征识别、漏洞检测、恶意代码分析等诸多方面。

基于生物特征的身份认证和访问控制是目前人工智能技术应用最成功的信息安全领域。从前制约生物特征识别技术在信息安全领域应用的关键问题是漏报率与误报率达不到实用要求。而利用以深度学习为核心的人工智能技术,科研人员已经将人脸、语音、指纹等等生物特征的识别率大大提升。以人脸识别为例,目前的准确率已经达到99%以上,技术的进步为生物特征识别的应用打下了良好基础。目前,已经有人脸支付等相关产品面世。支付领域的应用涉及社会和金融安全,在人脸识别的漏报、误报和检测准确率这些指标没有大幅提升的前提下是不可想象的。

在信息安全中尤为重要的漏洞检测技术领域,目前还缺乏高效、准确的漏洞分析自动化技术,很多安全威胁和风险需要专业工作人员的经验作深度的分析和最后的判断。人工智能在处理海量数据方面极具优势,通过对样本的训练可以模拟大量的攻击模式,可以基于人类已有经验也可以抛开人类经验进行全新的样本空间学习和探索,这样的技术解决思路将大大提高漏洞检测的全面性、准确性和时效性。

在恶意代码检测领域也是一样。传统的网络安全技术应急响应速度慢,不能适应恶意代码的迭代进化速度。而人工智能拥有强大的自主学习和数据分析能力,能够加速响应的流程,提升自动化和响应效率,缩短从发现到响应的间隔。这就为提前预知危险,及时预警并处理,将危险扼杀在摇篮中提供了可能,进而大大提高网络安全防御的敏捷性。

preview

二、具体应用

2.1. 恶意代码检测

恶意代码的数量和种类日趋增多,加上代码迷惑技术的兴起,使得检测恶意代码变得越来越困难。传统的基于签名的检测技术被商业杀毒防毒软件普遍使用,但是它必须要在获取一类病毒的签名之后才能有效的检测这类病毒,而签名一般都在感染后才被获取。这个特点使得计算机系统受到恶意代码威胁的可能性提高了。近年来,数据挖掘和机器学习技术应用于恶意代码检测领域,它之所以成为研究的重点,是因为它可以利用数据挖掘从已存在的大量代码数据中挖掘出有意义的模式,利用机器学习可以帮助归纳出已知恶意代码的识别知识,以此来进行相似性搜索,帮助发现未知恶意代码。本文采用数据挖掘和机器学习技术检测恶意代码。

克隆检测主要包括源代码检测以及二进制代码检测,广泛应用于漏洞发现,代码克隆检测,用户 端崩溃分析等,目前,恶意代码分析变得比以往任何时候都更加重要。随着科技的日益发展,大量的物联网设备投入使用,据 Gartner 分析在 2017 年时全球已经有 84 亿物联网设备投入使用,比 2016 年 增长 31%,预测到 2020 年将达到 204 亿。而物联网的快速发展,导致各种网络攻击以及恶意代码也随之增多,因此,恶意代码分析变的十分迫切。而人工智能在恶意代码检测发挥着越来越多的作用。

CNN 进行特征提取:对构成的文本特征进行建模,CNN 利用卷积滤波器提取句子不同 位置的 n-gram 特征。

SLSTM 模型的输入由两部分组成,部分是 CNN 提取的高级窗口表示,另一部分是 系统调用函数的图形嵌入表示。同一个样本中的每个自定义函数的 CFG 对应的相同的系统调用函数 图(AFCG),即每个自定义函数的反汇编代码文本对应于同样的系统调用图结构特征,因为虽然是 不同自定义函数但都来源于同一个样本。
在这里插入图片描述
图.语义模型的 CNN-SLSTM 的体系结构

2.2. 自动钓鱼检测

互联网钓鱼欺诈,简称网络钓鱼(**钓鱼,是指攻击者通过发送欺骗性垃圾邮件,即时通你留言等方式,骗取用户点击访问建假仿冒的钓鱼网站,意图引诱用户泄露其敏感信息如用户名,口令,影号,ATM PIN码或信用卡详细信息)的一种攻击方式”**被攻击用户,轻则丢失个人私密信息,重则遭受严重的经济损失,造成极其恶劣的影响,截至2020年6月31.8%有网络购物经历的网民曾依网购过程中直接碰到钓鱼网站或诈骗网站,且每年因钓鱼网站或诈骗网站给网民造成的损失不低于308个亿”,因此,网络约鱼行为对互联网的健康发展已经造成了巨大的负面影响。

preview

不法分子模拟可信实体大量的网络钓鱼网站获取您的数据,如您的信用卡的登录、密码、号码和 CV 等等。机器学习算法对于一次性地销毁这种方案具有很大的帮助作用。

ML 可以通过类似于电子邮件垃圾邮件过滤器的邮件分类帮助。最初的训练数据是由用户手动标记邮件或报告可疑链接的人群来源。与以往一样,通过不断学习的过程, ML 算法可以提高精度。

2.3.自动数据盗窃检测

数据泄露是当今组织面临的最常见的威胁载体之一。为了缓解这样的问题,基于机器学习的算法可以被用来通过隐蔽的通道(如深网或暗网)爬行,并识别恶意用户匿名共享的数据。

互联网的最后一层是黑暗的网络。它比表面或深度网络更难访问,因为它只能通过特殊的浏览器(如 Tor 浏览器)访问。

虽然深度网络只能通过匿名加密的对等通信信道访问,但需要应用某些保护措施,如 CAPTCHA 。反过来, AI 必须欺骗这些系统,使其相信收集数据的代理是人类的,并且可以从解决简单的 captc 到使用 NLP 来向恶意各方的私人社区发出邀请。利用机器视觉,可以在实时中分析图像。

为了使 ML 算法有效,需要:

  • 能够检测不同类型的数据元素(用户定义的类型、基元类型、数据转换的沿袭、硬编码的文本、注释的类型、对环境数据的引用标识符等等)
  • 能够基于使用自然语言处理的受监管模型将这些检测到的类型分类为敏感的,该模型被训练成遵从命令的集合。
  • 跟踪此类敏感类型的所有转换、血统和来源
  • 最后,测量这些敏感类型是否违反了当前( SOC-2、 GDPR )或即将到来( CCPA )的法规遵从性约束。

preview

图.不同类型的数据元素

2.4. 感知上下文的行为分析

这更像一个概念或模型,情境感知行为分析建立在异常行为可能引发攻击的前提之上。这种类型的评估是通过大数据和机器学习来确定用户活动的风险在近实时。

这种方法也被称为 UBA ,它拼写来自用户行为分析。

所有的安全产品都在二值术语的世界中:流量不好或好,文件感染与否。那么如何检测较小的信号呢?详细阐述正常用户行为的标准模式有助于解决这一问题。
在这里插入图片描述

图.上下文分析

由于编纂什么行为可以是“正常”的行为是很复杂的,因此 ML (机器学习)模型通过查看历史活动和在对等组中进行比较来为每个用户构建基线。它是如何工作的?在检测到任何异常事件的情况下,评分机制聚集它们以为每个用户提供组合的风险得分。

具有较高评分的用户将被筛选出来并呈现给具有上下文信息的分析师以及他们的角色和职责。下面是这个公式:

风险=可能性X影响

通过跟踪它,使用 UBA 的应用程序能够提供可操作的风险智能。

2.5. 基于蜜罐的社会工程防御

什么是蜜罐?这只是一个陷阱, IT 专业人员为恶意黑客设置,希望他们能以提供有用情报的方式与之互动。这是 IT 中最古老的安全措施之一

随着互联网的飞速发展,网络安全已经日趋重要,针对不断出现的网络 攻击技术,主动防御系统的出现是必然的。主动防御技术中的蜜罐技术将传统 攻击手段中的欺骗技术引入了安全防御领域,从一个新的方向出发来处理网络安全问题。设计中应用蜜罐技术的基本思想,模拟设计了一个低交互式的小型蜜罐系统。在VMwar上安装操作系统,应用网站开发搭建了一个虚拟交互网站。通过对模拟网站的日志文件的自动读取和处理,最终达到了对网站交互平 台上的访问者进行判断,设计中用到了伪装逼真、数据捕获和数据分析等技 术,可以在虚拟与真实系统间完成对入侵者重定向的目的。

img

图.原始网络拓扑结构

img

图.采用蜜罐技术的网络拓扑结构

另一个不坏的概念,有很大的潜力即将发布。

攻击者利用人类的心理,能够获取个人信息,以危害安全系统,硬件和软件本身无法阻止这些攻击。一种可能的对策是利用社交蜜罐、用来诱捕攻击者的假角色装饰。

通过充当诱饵用户,它试图欺骗攻击者。由于与蜜罐的所有通信都是未经请求的,所以初始合同很可能是垃圾邮件。ML(机器学习) 用于对发送者是恶意的还是良性的进行分类。这样的分类然后被自动传播到所有真实雇员的设备,然后,这些设备将自动阻止来自犯罪一方的进一步通信尝试。

三、总结

通过对每个恶意软件样本进行静态反汇编分析根据函数的控制流程图构建其自定义函数的反汇编代码文本,以及整个样本的系统函数调用图为恶意软件的特征相结合,然后利用之前的一神经网络模型(CNN-SLSTM),对恶意代码组样本进行分类。该方法能够很好地提取恶意代码特征并据此进行分类,提高检测效率!

总而言之,人工智能将在信息系统安全中发挥着越来越重要的作用,而与此同时,人工智能的发展也将给不法分子带来可乘之机,对信息系统安全造成威胁。可见,事物都具有两面性,而我们要取其精华,去其糟粕!

四、参考文献

[1] https://zhuanlan.zhihu.com/p/105332028

[2] https://blog.csdn.net/linux_hua130/article/details/105509386

[3] https://www.cnblogs.com/linuxprobe/p/12697169.html

[4] Bencs´ath, G. P´ek, L. Butty´an, and M. F´elegyh´azi, “The cousins of stuxnet: Duqu, flame, and gauss. Future Internet 4 (4): 971–1003,” 2012.

[5] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for modelling sentences,” Eprint Arxiv, vol. 1, 2014.

[6] 诸葛建伟,韩心慧,周勇林等.HoneyBow:一个基于高交互式蜜罐技术的恶意代码自动捕获器.

[7] http://www.eepw.com.cn/article/201911/406680.htm

[8]刘巍伟,石勇,郭煜,韩臻等.一种基于深度学习的恶意代码识别方法.

[9]贾菲,刘威.基于机器学习恶意代码逆向分析技术的研究.

[10]http://www.gjbmj.gov.cn/n1/2018/0530/c411145-30023895.html

[11]夏天天.基于数据挖掘和机器学习的恶意代码检测技术研究

[12]张朝阳.一种基于深度学习的蜜罐防御方法

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent semantic analysis,” Journal of the American society for information science, vol. 41, no. 6, pp. 391–407, 1990.

[14]赵泽茂,朱芳.信息安全技术.西安:西安电子科技大学出版社,2009

[15][李锁](https://xueshu.baidu.com/s?wd=author%3A(李锁) &tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson),[吴毅坚](https://xueshu.baidu.com/s?wd=author%3A(吴毅坚) &tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson),[赵文耘](https://xueshu.baidu.com/s?wd=author%3A(赵文耘) &tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson).基于代码克隆检测的代码来源分析方法

[16]L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among a set of programs with JPlag,” Journal of Universal Computer Science, vol. 8, no. 11, pp. 1016–1038, 2002.

相关文章:

人工智能在信息系统安全中的运用

一、 概述 对于企业和消费者来讲,人工智能是非常有用的工具,那又该如何使用人工智能技术来保护敏感信息?通过快速处理数据并预测分析,AI可以完成从自动化系统到保护信息的所有工作。尽管有些黑客利用技术手段来达到自己的目的,但…...

[python3] 装饰器

装饰器是Python中一种特殊的语法,用于在不修改原函数代码的情况下,为函数添加额外的功能。 装饰器基于函数闭包和函数作为第一类对象的特性实现。 原理: Python中的装饰器本质上是一个函数或类,它接受一个函数作为参数&#xff0…...

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Checkbox)

提供多选框组件,通常用于某选项的打开或关闭。 说明: API version 11开始,Checkbox默认样式由圆角方形变为圆形。 该组件从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 无 接口…...

【三十】springboot项目上高并发解决示例

互相交流入口地址 整体目录: 【一】springboot整合swagger 【二】springboot整合自定义swagger 【三】springboot整合token 【四】springboot整合mybatis-plus 【五】springboot整合mybatis-plus 【六】springboot整合redis 【七】springboot整合AOP实现日志操作 【…...

原生JavaScript,根据后端返回JSON动态【动态列头、动态数据】生成表格数据

前期准备&#xff1a; JQ下载地址&#xff1a; https://jquery.com/ <!DOCTYPE html> <html><head><meta charset"utf-8"><title>JSON动态生成表格数据,动态列头拼接</title><style>table {width: 800px;text-align: cen…...

OD_2024_C卷_200分_9、园区参观路径【JAVA】【动态规划】

package odjava;import java.util.Scanner;public class 九_园区参观路径 {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt(); // 长 -> 行数int m sc.nextInt(); // 宽 -> 列数int[][] matrix new int[n][m]; // 地图…...

校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序

项目描述&#xff1a; 校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序 功能介绍&#xff1a; 表白墙 卖舍友 步数旅行 步数排行榜 情侣脸 漫画脸 个人主页 私信 站内消息 今日话题 评论点赞收藏 服务器环境要求&#xff1a;PHP7.0 MySQL5.7 效果…...

数据结构小记【Python/C++版】——散列表篇

一&#xff0c;基础概念 散列表&#xff0c;英文名是hash table&#xff0c;又叫哈希表。 散列表通常使用顺序表来存储集合元素&#xff0c;集合元素以一种很分散的分布方式存储在顺序表中。 散列表是一个键值对(key-item)的组合&#xff0c;由键(key)和元素值(item)组成。键…...

前端框架的发展史可以追溯到早期的静态网页时代

前端框架的发展史可以追溯到早期的静态网页时代。以下是前端框架的主要发展阶段&#xff1a; 静态网页时代&#xff1a;在互联网的初期&#xff0c;网页主要由HTML、CSS和JavaScript构成。这些网页是静态的&#xff0c;没有复杂的交互和动态内容。 原生JavaScript时代&#xf…...

迷宫可行路径数

题目描述 现有一个n∗m大小的迷宫&#xff0c;其中1表示不可通过的墙壁&#xff0c;0表示平地。每次移动只能向上下左右移动一格&#xff08;不允许移动到曾经经过的位置&#xff09;&#xff0c;且只能移动到平地上。求从迷宫左上角到右下角的所有可行路径的条数。 输入描述…...

消息队列学习

消息队列是什么 消息队列&#xff1a;Kafka、RocketMQ、RabbitMQ等 腾讯云CMQ消息队列介绍是这么说的&#xff1a; 腾讯云消息队列&#xff08;Cloud Message Queue&#xff0c;以下简称 CMQ&#xff09;是分布式的消息队列服务&#xff0c;用于存储进程间传输的消息&#xff…...

API接口技术开发店铺详情接口采集店铺ID、卖家ID、掌柜名字、店铺名、店铺类型、店铺主页、店铺等级、店铺评分、联系方式等数据接入演示

API接口技术开发店铺详情接口采集店铺ID、卖家ID、掌柜名字、店铺名、店铺类型、店铺主页、店铺等级、店铺评分、联系方式等数据&#xff0c;可以按照以下步骤进行接入演示&#xff1a; 注册并获取API密钥&#xff1a; 在电商平台的开发者中心注册账号。创建一个应用&#xff0…...

ffmpeg maxrate 导致转码输出的内容包含随机性

https://trac.ffmpeg.org/wiki/Limiting%20the%20output%20bitrate 问题 领导提出了一个问题&#xff0c;为什么转码后的视频大小字节数据都不一样&#xff0c;这问到我了&#xff0c;一时语塞。查一下吧&#xff0c;没有什么资料支撑。主动试一下。 尝试 首先尝试一下直接…...

Graphpad Prism10.2.1(395) 安装教程 (含Win/Mac版)

GraphPad Prism GraphPad Prism是一款非常专业强大的科研医学生物数据处理绘图软件&#xff0c;它可以将科学图形、综合曲线拟合&#xff08;非线性回归&#xff09;、可理解的统计数据、数据组织结合在一起&#xff0c;除了最基本的数据统计分析外&#xff0c;还能自动生成统…...

Cocos Creator 2d光照

godot游戏引擎是有2d光照的&#xff0c;用起来感觉还是很强大的&#xff0c;不知道他是怎么搞的&#xff0c;有时间看看他们怎么实现的。 之前一直以为cocos社区里面没有2d光照的实现&#xff0c;偶然看到2d实现的具体逻辑&#xff0c;现在整理如下&#xff0c; 一&#xff1…...

5款好用的AI办公软件,一键轻松制作PPT、视频,提升工作效率!

众所周知&#xff0c;AI 人工智能技术已渗透到生活的方方面面&#xff0c;无论是很多人早已用上的智能音箱、语音助手&#xff0c;还是新近诞生的各种 AI 软件工具&#xff0c;背后都离不开 AI 人工智能技术的加持。 对于各类新生的 AI 软件工具&#xff0c;人们很容易「选边站…...

【MyBatis面试题】

目录 前言 1.MyBatis执行流程。 2.Mybatis是否支持延迟加载&#xff1f; 3.延迟加载的底层原理知道吗&#xff1f; 4.Mybatis的一级、二级缓存用过吗&#xff1f; 5.Mybatis的二级缓存什么时候会清理缓存中的数据&#xff1f; 总结 前言 本文主要介绍了MyBatis面试题相…...

编程界的圣经:从Scheme到JavaScript构建你的计算思维

文章目录 适读人群目 录 《计算机程序的构造和解释》&#xff08;Structure and Interpretation of Computer Programs&#xff0c;简记为SICP&#xff09;是MIT的基础课教材&#xff0c;出版后引起计算机教育界的广泛关注&#xff0c;对推动全世界大学计算机科学技术教育的发…...

智慧城市与智慧乡村:共创城乡一体化新局面

一、引言 随着科技的不断进步和城乡发展的日益融合&#xff0c;智慧城市与智慧乡村的建设已成为推动城乡一体化发展的新引擎。智慧城市利用物联网、大数据、云计算等先进技术&#xff0c;实现城市治理、公共服务、产业发展等领域的智能化&#xff1b;而智慧乡村则借助现代科技…...

蓝桥杯——web(ECharts)

ECharts 初体验 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><script src"echarts.js">&l…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点&#xff1a; 共 6 个字段&#xff1a; Year&#xff08;年&#xff09;Month&#xff08;月&#xff09;Day&#xff08;日&#xff09;Hour&#xff08;小时&#xff09;Minute&#xff08;分钟&#xff09;Second&#xff08;秒&#xff09; 表示…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...