Cocos Creator 2d光照
godot游戏引擎是有2d光照的,用起来感觉还是很强大的,不知道他是怎么搞的,有时间看看他们怎么实现的。
之前一直以为cocos社区里面没有2d光照的实现,偶然看到2d实现的具体逻辑,现在整理如下,
一:实现原理
这里实现的2d光源是类似聚光灯的效果,是有一个衰减过程的,具体怎么个衰减法,还得用到我们学的数学知识就是线性衰减 y = -x + b,就是用它来模拟光照的衰减效果的,在光照半径范围内衰减的时候是一个值(根据距离进行衰减,该值的意义是对光照效果的贡献值),大于光照半径范围 光照贡献值急速的变为0.
1:需要哪些参数
模拟光照的参数,需要一个光源照射的半径范围r,光源锥形的角度r1,光源的强度indensity,光源的颜色 color,光源世界坐标,用来计算物体距离光源大小,以此来计算光照效果。
properties:alphaThreshold: { value: 0.5 }light_normal: { value: white }light_worldpos: { value: [255, 255, 255, 255], editor: { type: vec4 } } light_ambientColor: { value: [127, 127, 127, 127], editor: { type: color } }light_lightColor: { value: [255, 255, 255, 255], editor: { type: color } } light_radius: { value: 10.0 }light_halfRadius: { value: 0.5 }light_brightness: { value: 1.0 }
uniform Constant {// 环境光模拟白天和黑夜vec4 light_ambientColor;// 光源颜色vec4 light_lightColor;// 光源世界坐标vec4 light_worldpos;// 光源半径float light_radius;// 光源角度半径 决定了光源锥形区域的宽度float light_halfRadius;// 光源的亮度float light_brightness;float light_unused;};
光源的世界坐标可以通过外部脚本传入,定义一个节点挂在Light脚本来控制光源的世界坐标:
import { _decorator, Component, Node, Sprite, math, UITransform, Label, Vec2, Vec3, Vec4, Camera, view, Material, Texture2D, renderer, color, Color } from 'cc';
import { EDITOR } from 'cc/env';
const { ccclass, property, executeInEditMode } = _decorator;@ccclass('Light')
@executeInEditMode
export class Light extends Component {@property([Node])bodys_normal: Node[] = [];@property([Node])bodys: Node[] = [];@property(Material)eff: Material = null!;@property(Material)eff_normal: Material = null!;onLoad() {}start() {this.updateLight();}update() {this.updateLight();}getwpos(node2d: Node) {return node2d.worldPosition;}updateBody(target, lightPos) {// 更新uniformlet spr = target.getComponent(Sprite);// 灯光位置spr.getSharedMaterial(0).setProperty('light_worldpos', new Vec4(lightPos.x, lightPos.y, lightPos.z, 1));}updateLight() {// 光源位置let lightPos = this.getwpos(this.node)for (var idx in this.bodys_normal) {let node = this.bodys_normal[idx];if (null == node) return;this.updateBody(node, lightPos);}for (var idx in this.bodys) {let node = this.bodys[idx];if (null == node) return;this.updateBody(node, lightPos);}}
}
2:具体的一些细节
想要让光源产生效果,需要单独的给每个图片加上一个单独的材质,这样才能控制颜色的输出,这里使用时最新版本(3.8.x)的shader的结构:
// Copyright (c) 2017-2020 Xiamen Yaji Software Co., Ltd.
CCEffect %{techniques:- passes:- vert: light-vs:vertfrag: light-fs:fragdepthStencilState:depthTest: falsedepthWrite: falseblendState:targets:- blend: trueblendSrc: src_alphablendDst: one_minus_src_alphablendDstAlpha: one_minus_src_alpharasterizerState:cullMode: noneproperties:alphaThreshold: { value: 0.5 }light_normal: { value: white }light_worldpos: { value: [255, 255, 255, 255], editor: { type: vec4 } } light_ambientColor: { value: [127, 127, 127, 127], editor: { type: color } }light_lightColor: { value: [255, 255, 255, 255], editor: { type: color } } light_radius: { value: 10.0 }light_halfRadius: { value: 0.5 }light_brightness: { value: 1.0 }
}%CCProgram light-vs %{precision highp float;#include <builtin/uniforms/cc-global>#if USE_LOCAL#include <builtin/uniforms/cc-local>#endif#if SAMPLE_FROM_RT#include <common/common-define>#endifin vec3 a_position;in vec2 a_texCoord;in vec4 a_color;out vec4 color;out vec2 uv0;out vec4 object_position;vec4 vert () {vec4 pos = vec4(a_position, 1);// 不适用mvp矩阵计算成世界坐标,因为如果屏幕是横屏的时候,转成世界坐标后,x轴会出现拉伸。// 这里使用的是UI的坐标系,参考light.ts获取世界坐标的代码。object_position = pos;#if USE_LOCALpos = cc_matWorld * pos;#endif#if USE_PIXEL_ALIGNMENTpos = cc_matView * pos;pos.xyz = floor(pos.xyz);pos = cc_matProj * pos;#elsepos = cc_matViewProj * pos;#endifuv0 = a_texCoord;#if SAMPLE_FROM_RTCC_HANDLE_RT_SAMPLE_FLIP(uv0);#endifcolor = a_color;return pos;}
}%CCProgram light-fs %{precision highp float;#include <builtin/internal/embedded-alpha>#include <builtin/internal/alpha-test>in vec4 color;in vec4 object_position;#if USE_TEXTUREin vec2 uv0;#pragma builtin(local)layout(set = 2, binding = 11) uniform sampler2D cc_spriteTexture;#endif// 是否使用2d法线#if USE_2D_NORMALuniform sampler2D light_normal;#endif#if USE_2D_LIGHTuniform Constant {// 环境光模拟白天和黑夜vec4 light_ambientColor;// 光源颜色vec4 light_lightColor;// 光源世界坐标vec4 light_worldpos;// 光源半径float light_radius;// 光源角度半径 决定了光源锥形区域的宽度float light_halfRadius;// 光源的亮度float light_brightness;float light_unused;};/*** 亮度计算, 按照距离远近衰减, 采取内外光圈叠加方式, 按照世界坐标计算 (0.0 ~ 1.0)* @param dist 距离 (0.0 ~ 1.0)* @param cutoff_r 外光圈半径 (> 0.0) 光源的截止半径 超过这个半径区域不再受到关照的影响* @param half_r 内光圈半径, 使用cutoffRadius的半径占比 (0.0 ~ 1.0) 光源的角度半径,决定了光源锥形区域的宽度*/float light_bright(float dist, float cutoff_r, float half_r) {// 截距float intercept = cutoff_r * half_r;// dx_1 = 1 / (2 * intercept) => y = 1 / 2x; 双曲线 近处float dx_1 = 0.5 / intercept;// dx_2曲线和dx_1曲线对称,对称中心是(cutoff_r / 2,1 / cutoff_r) 远处float dx_2 = 0.5 / (cutoff_r - intercept);float offset = 0.5 + intercept * dx_2;// 近处 慢慢衰减float falloffTermNear = clamp((1.0 - dist * dx_1), 0.0, 1.0);// 远处 远离光源的时候迅速减小到0float falloffTermFar = clamp((offset - dist * dx_2), 0.0, 1.0);// 当dist > intercept 的时候 => 1 dist < intercept => 0float falloffSelect = step(intercept, dist);// 计算光源对某一个点的照明贡献 距离衰减因子 dist < intercept => fallofftTermNear 近距离因子 dist > intercept => 远距离因子float falloffTerm = (1.0 - falloffSelect) * falloffTermNear + falloffSelect * falloffTermFar;return falloffTerm;}/*** 计算灯光的颜色值* @param dist 物体距离光源的距离, 世界单位 (> 0.0)* @param radius 光源半径,世界单位 (> 0.0)*/vec3 light_diffuse (float dist, float radius) { // 计算像素点所在光圈位置的亮度float falloffTerm = light_bright(dist, radius, light_halfRadius);// falloffTerm 为亮度值, light_lightColor 为灯光颜色return falloffTerm * vec3(light_lightColor);}/*** 计算光照颜色* @param object_position 物体坐标, 世界坐标* @param object_vertex_normal 顶点的法线向量, 归一化*/vec3 light_color(vec3 col) {// 计算光线方向, 这个方式不能直接用,打个比方纹理是正方形的,而世界坐标可能是长方形的(GL的坐标固定在-1.0到1.0之间, 而屏幕不一定是正方形)vec4 object_direction = object_position - light_worldpos;// 计算物体与灯光的距离float object_dist = length(vec3(object_direction));// 开启这个可以测试// object_dist = length(uv0 - 0.5);// 计算物体与灯光的的距离, 占用直径的百分比float object_dist_normal = object_dist / (light_radius * 2.0);// 获取灯光漫反射颜色vec3 diffuse = light_diffuse(object_dist_normal, light_radius);#if USE_2D_NORMAL// 获取法向量vec3 normal = texture(light_normal, uv0).rgb;normal = normal * 2.0 - 1.0;// 计算光照反射系数,向量点积float normalDot = max(0.0, dot(normal, -normalize(vec3(object_direction.x, object_direction.y, -60))));// 反射光 * 法向量衰减 + 环境光 return col * (diffuse * light_brightness * normalDot + vec3(light_ambientColor));#else// 反射光 * 法向量衰减 + 环境光 (没有法线的情况下需要 0.5 衰减)return col * (diffuse * light_brightness + vec3(light_ambientColor));#endif }/*** 计算光照颜色* @param object_position 物体坐标, 世界坐标* @param object_vertex_normal 顶点的法线向量, 归一化*/vec4 light_dist() {}#endifvec4 frag () {vec4 o = vec4(1, 1, 1, 1);#if USE_TEXTUREo *= CCSampleWithAlphaSeparated(cc_spriteTexture, uv0);#if IS_GRAYfloat gray = 0.2126 * o.r + 0.7152 * o.g + 0.0722 * o.b;o.r = o.g = o.b = gray;#endif#endifo *= color;ALPHA_TEST(o);#if USE_2D_LIGHTreturn vec4(light_color(vec3(o)), o.a);#elsereturn o;#endif}
}%
主要的核心方法:light_bright,这个方法是用来计算光照贡献值的。
其中intercept = cutoff_r * half_r 是设定了一个阙值,当dist < intercept的时候用什么样的衰减方式,当dist > intercept的时候用什么样的衰减方式,
那么 float dx_1 = 0.5 / intercept 该怎么理解呢,这个得结合falloffTermNear,falloffTermFar来理解,就好比v = s / t,总的衰减总数是1,前半部分(dist < intercept)占了0.5,那么后半部分就是1 - 0.5,我还是画一张图来理解吧,每衰减 1需要消耗的值就是 dx_1,这个dx_1可以理解为衰减的速率,也就是下面代码中出现的斜率,也就是衰减速度。那么dx_1讲清楚了,自然而然dx_2你也是理解的
这里还有一个点就是offset什么意思,offset指的就是当dist = intercept的时候怎么保证两个衰减过程衔接的非常自然呢,咱们可以列一个公式看看
1 - dist * dx_1 = offset - dist * dx_2,很容易我们解方程就能够知道 offset = 0.5 + intercept * dx_2;
最后根据dist来计算对光照的影响程度就可以了,
/*** 亮度计算, 按照距离远近衰减, 采取内外光圈叠加方式, 按照世界坐标计算 (0.0 ~ 1.0)* @param dist 距离 (0.0 ~ 1.0)* @param cutoff_r 外光圈半径 (> 0.0) 光源的截止半径 超过这个半径区域不再受到关照的影响* @param half_r 内光圈半径, 使用cutoffRadius的半径占比 (0.0 ~ 1.0) 光源的角度半径,决定了光源锥形区域的宽度*/float light_bright(float dist, float cutoff_r, float half_r) {// 截距float intercept = cutoff_r * half_r;// dx_1 = 1 / (2 * intercept) => y = 1 / 2x; 双曲线 近处float dx_1 = 0.5 / intercept;// dx_2曲线和dx_1曲线对称,对称中心是(cutoff_r / 2,1 / cutoff_r) 远处float dx_2 = 0.5 / (cutoff_r - intercept);// 用在两种衰减过程中的阙值出的矫正保证颜色渐变的连贯 计算过程是 1 - dist * dx_1 = offset - dist * dx_2 可以反算出来 offset = 0.5 + intercept * dx_2float offset = 0.5 + intercept * dx_2;// 近处 慢慢衰减 线性衰减float falloffTermNear = clamp((1.0 - dist * dx_1), 0.0, 1.0);// 远处 远离光源的时候迅速减小到0float falloffTermFar = clamp((offset - dist * dx_2), 0.0, 1.0);// 当dist > intercept 的时候 => 1 dist < intercept => 0float falloffSelect = step(intercept, dist);// 计算光源对某一个点的照明贡献 距离衰减因子 dist < intercept => fallofftTermNear 近距离因子 dist > intercept => 远距离因子float falloffTerm = (1.0 - falloffSelect) * falloffTermNear + falloffSelect * falloffTermFar;return falloffTerm;}
讲解到这里希望你能够理解光源产生的过程。
下面贴下原文的链接:
cocos creator 2D关照
我只是把不容易理解的部分给讲一下,希望对你有帮助。
相关文章:

Cocos Creator 2d光照
godot游戏引擎是有2d光照的,用起来感觉还是很强大的,不知道他是怎么搞的,有时间看看他们怎么实现的。 之前一直以为cocos社区里面没有2d光照的实现,偶然看到2d实现的具体逻辑,现在整理如下, 一࿱…...

5款好用的AI办公软件,一键轻松制作PPT、视频,提升工作效率!
众所周知,AI 人工智能技术已渗透到生活的方方面面,无论是很多人早已用上的智能音箱、语音助手,还是新近诞生的各种 AI 软件工具,背后都离不开 AI 人工智能技术的加持。 对于各类新生的 AI 软件工具,人们很容易「选边站…...

【MyBatis面试题】
目录 前言 1.MyBatis执行流程。 2.Mybatis是否支持延迟加载? 3.延迟加载的底层原理知道吗? 4.Mybatis的一级、二级缓存用过吗? 5.Mybatis的二级缓存什么时候会清理缓存中的数据? 总结 前言 本文主要介绍了MyBatis面试题相…...

编程界的圣经:从Scheme到JavaScript构建你的计算思维
文章目录 适读人群目 录 《计算机程序的构造和解释》(Structure and Interpretation of Computer Programs,简记为SICP)是MIT的基础课教材,出版后引起计算机教育界的广泛关注,对推动全世界大学计算机科学技术教育的发…...

智慧城市与智慧乡村:共创城乡一体化新局面
一、引言 随着科技的不断进步和城乡发展的日益融合,智慧城市与智慧乡村的建设已成为推动城乡一体化发展的新引擎。智慧城市利用物联网、大数据、云计算等先进技术,实现城市治理、公共服务、产业发展等领域的智能化;而智慧乡村则借助现代科技…...

蓝桥杯——web(ECharts)
ECharts 初体验 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><script src"echarts.js">&l…...

MySQL数据库在Windows和Linux中由于大小写默认规则不同,出现大小写问题如何解决?
Windows和Linux差异:在Windows上,lower_case_table_names默认为1,而在Linux上,默认值通常为0。因此,在Linux上更改这个设置更常见,以确保与Windows环境的兼容性或实现特定的大小写敏感性需求。 操作系统的大…...

新雀优化算法NOA求解机器人栅格地图最短路径规划,可以自定义地图(提供MATLAB代码)
一、星雀优化算法 星雀优化算法(Nutcracker optimizer algorithm,NOA)由Mohamed Abdel-Basset等人于2023年提出,该算法模拟星雀的两种行为,即:在夏秋季节收集并储存食物,在春冬季节搜索食物的存储位置。CEC2005:星雀优化算法(Nut…...

重塑语言智能未来:掌握Transformer,驱动AI与NLP创新实战
Transformer模型 Transformer是自然语言理解(Natural Language Understanding,NLU)的游戏规则改变者,NLU 是自然语言处理(Natural Language Processing,NLP)的一个子集。NLU已成为全球数字经济中AI 的支柱之一。 Transformer 模型标志着AI 新…...

【Windows】Windows 11无法连接共享打印机
Windows 11无法连接共享打印机 1.在电脑点击winr 键然后输入gpedit.msc进行回车进入本地本地组策略编辑器2.打开本地组策略-管理模板>打印机->找到配置RPC连接设置,打开3.选择“已启用”,将下面连接协议改成“命名管道上的RPC”,搞定。…...

Window10数据库崩溃启动失败,MySQL8.0.30通过data文件夹恢复数据库到Docker
背景: 昨天关机前还在使用mysql,一切正常,但今天打开电脑,发现mysql启动不起来了,老是提示端口占用,但是系统也没有新安装什么软件,而且通过查询nat命令也没发现3306端口占用。而且修改成3307等…...
【树】-Lc101-对称二叉树(一棵树是否是另一棵树的子树的变形)
写在前面 最近想复习一下数据结构与算法相关的内容,找一些题来做一做。如有更好思路,欢迎指正。 目录 写在前面一、场景描述二、具体步骤1.环境说明2.代码 写在后面 一、场景描述 对称二叉树。给给定一个二叉树,检查它是否是镜像对称的。 例…...
在Jupyter Notebook中安装第三方库
pip vs. conda pip 可以在所有环境下安装python包。conda 可以在conda环境下安装所有包。 如果你已经安装了python,那么这个选择对你来说是非常容易的: 如果你是用Anaconda或者Miniconda安装的python,那么请使用conda命令来安装python包。如…...
「AI工程师」数据处理与分析-工作指导
工作指导书 一、工作职责 负责数据的收集、清洗、整合和处理,确保数据质量和准确性。进行数据分析和挖掘,提取有价值的信息,为业务决策提供支持。构建和维护数据处理和分析的流程和工具,提高数据处理效率。与其他团队成员合作,共同解决数据处理和分析过程中遇到的问题。二…...
Rust:Mutex 的示例代码
在Rust中,你可以使用std::sync::Mutex来创建一个互斥锁,从而保护共享资源。下面是一个使用Mutex的简单示例: use std::sync::Mutex; use std::thread; use std::time::Duration; fn main() { // 创建一个包含整数的Mutex let counter…...
在 Docker 环境下安装 OpenWrt
在 Docker 环境下安装 OpenWrt 是一种方便且易于管理的方式,它允许您在不需要物理设备的情况下运行 OpenWrt。以下是在 Docker 中安装 OpenWrt 的步骤: 首先,您需要安装 Docker。具体安装方法可以参考 Docker 官方文档。在安装完成后…...

stl的基本知识学习
1.vector: 2.set: 3.map: 4.栈: 5.队列: 6. unordered_map与unordered_set: 7. 位运算: 8.cctype: 导图:...

Python从0到100(三):Python中的变量介绍
前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…...

污水处理厂重金属废水深度处理CH-90树脂处理系统
项目名称 广东某工业污水处理厂重金属废水深度处理工程项目 工艺选择 科海思重金属深度处理工艺 工艺原理 离子交换吸附 项目背景 随着环保要求不断提高,工业废水处理已成为众多企业的必修课。然而在工业生产中,如何有效处理含有重金属的废水成为…...
WordPress供求插件API文档:用户登录
该文档为WordPress供求插件文档,详情请查看 WordPress供求插件:一款专注于同城生活信息发布的插件-CSDN博客文章浏览阅读67次。WordPress供求插件:sliver-urban-life 是一款专注于提供同城生活信息发布与查看的插件,该插件可以实…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001
qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类,直接把源文件拖进VS的项目里,然后VS卡住十秒,然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分,导致编译的时候找不到了。因…...

Selenium 查找页面元素的方式
Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素,以下是主要的定位方式: 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...

aurora与pcie的数据高速传输
设备:zynq7100; 开发环境:window; vivado版本:2021.1; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程,pc通过pcie传输给fpga,fpga再通过aur…...

【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器
从本章节开始,进入到函数有多个参数的情况,前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参,ECX是整型的第一个参数的寄存器,那么多个参数的情况下函数如何传参,下面展开介绍参数为整型时候的几种情…...
window 显示驱动开发-如何查询视频处理功能(三)
D3DDDICAPS_GETPROCAMPRANGE请求类型 UMD 返回指向 DXVADDI_VALUERANGE 结构的指针,该结构包含特定视频流上特定 ProcAmp 控件属性允许的值范围。 Direct3D 运行时在D3DDDIARG_GETCAPS的 pInfo 成员指向的变量中为特定视频流的 ProcAmp 控件属性指定DXVADDI_QUER…...