当前位置: 首页 > news >正文

从Pandas到Polars :数据的ETL和查询

对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。

本文将介绍如何将日常的数据ETL和查询过滤的Pandas转换成polars。

图片

Polars的优势
Polars是一个用于Rust和Python的DataFrame库。

Polars利用机器上所有可用的内核,而pandas使用单个CPU内核来执行操作。

Polars比pandas相对轻量级,没有依赖关系,这使得导入Polars的速度更快。导入Polars只需要70毫秒,而导入pandas需要520毫秒。

Polars进行查询优化减少了不必要的内存分配。它还能够以流方式部分或全部地处理查询。

Polars可以处理比机器可用RAM更大的数据集。

ETL
Extract, Transform, and Load (ETL)的过程是怎样的:

“提取、转换和加载(ETL)是将来自多个数据源的数据组合到称为数据仓库的过程。ETL使用一组业务规则来清理和组织原始数据,并为存储、数据分析和机器学习(ML)做好准备。可以通过数据分析解决特定的业务智能需求(例如预测业务决策的结果、生成报告、减少操作效率低下,等等)。(来源:AWS)

Polars和Pandas都支持从各种来源读取数据,包括CSV、Parquet和JSON。

df = pl.read_csv(‘data.csv’)
df = pl.read_parquet(‘data.parquet’)
df = pl.read_json(‘data.json’)
对于数据的读取方面和Pandas基本一致。

转换是ETL中最重要、最困难和最耗时的步骤。

polar支持Pandas函数的一个子集,所以我们可以使用熟悉的Pandas函数来执行数据转换。

df = df.select([‘A’, ‘C’])
df = df.rename({‘A’: ‘ID’, ‘C’: ‘Total’})
df = df.filter(pl.col(‘A’) > 2)
df = df.groupby(‘A’).agg({‘C’: ‘sum’})
这些Pandas函数都可以直接使用。

创建新列:

df = df.with_column(pl.col(‘Total’) / 2, ‘Half Total’)
处理空值:

df = df.fill_null(0)
df_filled = df.fill_null(‘backward’)
df = df.fillna(method=‘ffill’)
Dataframe 的合并

#pandas
df_join = pd.merge(df1, df2, on=‘A’)
#polars
df_join = df1.join(df2, on=‘A’)
连接两个DF

#pandas
df_union = pd.concat([df1, df2], ignore_index=True)
#polars
df_union = pl.vstack([df1, df2])
polar使用与Pandas相同的函数来将数据保存到CSV、JSON和Parquet文件中。

CSV

df.to_csv(file)

JSON

df.to_json(file)

Parquet

df.to_parquet(file)
最后,如果你还需要使用Pandas做一些特殊的操作,可以使用:

df.to_pandas()
这可以将polar的DF转换成pandas的DF。

最后我们整理一个简单的表格:

图片

数据的查询过滤
我们的日常工作中,数据的查询是最重要,也是用的最多的,所以在这里我们再整理下查询过滤的操作。

首先创建一个要处理的DataFrame。

pandas

import pandas as pd

read csv

df_pd = pd.read_csv(“datasets/sales_data_with_stores.csv”)

display the first 5 rows

df_pd.head()
图片

polars

import polars as pl

read_csv

df_pl = pl.read_csv(“datasets/sales_data_with_stores.csv”)

display the first 5 rows

df_pl.head()
图片

polars首先显示了列的数据类型和输出的形状,这对我们来说非常好。下面我们进行一些查询,我们这里只显示一个输出,因为结果都是一样的:

1、按数值筛选

pandas

df_pd[df_pd[“cost”] > 750]
df_pd.query(‘cost > 750’)

polars

df_pl.filter(pl.col(“cost”) > 750)
图片

2、多个条件查询

pandas和polar都支持根据多个条件进行过滤。我们可以用“and”和“or”逻辑组合条件。

pandas

df_pd[(df_pd[“cost”] > 750) & (df_pd[“store”] == “Violet”)]

polars

df_pl.filter((pl.col(“cost”) > 750) & (pl.col(“store”) == “Violet”))
图片

3、isin

pandas的isin方法可用于将行值与值列表进行比较。当条件包含多个值时,它非常有用。这个方法的polar版本是" is_in "。

pandas

df_pd[df_pd[“product_group”].isin([“PG1”, “PG2”, “PG5”])]

polars

df_pl.filter(pl.col(“product_group”).is_in([“PG1”, “PG2”, “PG5”]))
图片

4、选择列的子集

为了选择列的子集,我们可以将列名传递给pandas和polar,如下所示:

cols = [“product_code”, “cost”, “price”]

pandas (both of the following do the job)

df_pd[cols]
df_pd.loc[:, cols]

polars

df_pl.select(pl.col(cols))
图片

5、选择行子集

pandas中可以使用loc或iloc方法选择行。在polar则更简单。

pandas

df_pd.iloc[10:20]

polars

df_pl[10:20]
选择相同的行,但只选择前三列:

pandas

df_pd.iloc[10:20, :3]

polars

df_pl[10:20, :3]
如果要按名称选择列:

pandas

df_pd.loc[10:20, [“store”, “product_group”, “price”]]

polars

df_pl[10:20, [“store”, “product_group”, “price”]]
按数据类型选择列:

我们还可以选择具有特定数据类型的列。

pandas

df_pd.select_dtypes(include=“int64”)

polars

df_pl.select(pl.col(pl.Int64))
图片

总结
可以看到polar与pandas非常相似,所以如果在处理大数据集的时候,我们可以尝试使用polar,因为它在处理大型数据集时的效率要比pandas高,我们这里只介绍了一些简单的操作,如果你想了解更多,请看polar的官方文档:

https://pola-rs.github.io/polars-book/user-guide/coming_from_pandas.html

相关文章:

从Pandas到Polars :数据的ETL和查询

对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。 本文将介绍如何将日常的数据ETL和查询过滤的Pandas转换成polars。 图片 Polars的优势 Polars是一个用于Rust和Python的Data…...

Node.Js编码注意事项

Node.js 中不能使用 BOM 和 DOM 的 API,可以使用 console 和定时器 APINode.js 中的顶级对象为 global,也可以用 globalThis 访问顶级对象 浏览器端js的组成 Node.js中的JavaScript组成 相比较之下发现只有console与定时器是两个API所共有的&#xff…...

floodfill算法题目

前言 大家好,我是jiantaoyab,在下面的题目中慢慢体会floodFill算法,虽然是新的算法,但是用的思想和前面的文章几乎一样,代码格式也几乎一样,但不要去背代码 图像渲染 https://leetcode.cn/problems/flood…...

AI相关的实用工具分享

AI实用工具大赏:赋能科研与生活,探索AI的无限可能 前言 在数字化浪潮汹涌而至的今天,人工智能(AI)已经渗透到我们生活的方方面面,无论是工作还是生活,都在悄然发生改变。AI的崛起不仅为我们带…...

K8s — PVC|PV Terminating State

在本文中,我们将讨论PV和PVC一直Terminating的状态。 何时会Terminting? 在以下情况下,资源将处于Terminating状态。 在删除Bounded 状态的PVC之前,删除了对应的PV,PV在删除后是Terminting状态。删除PVC时,仍有引用…...

C语言 --- 指针(5)

目录 一.sizeof和strlen对比 1.sizeof 2.strlen 3.strlen 和sizeof的对比 二.数组和指针笔试题目详解 回顾:数组名的理解 1.一维数组 2.字符数组 代码1: 代码2: 代码3: 代码4: 代码5: 代码6&am…...

Android Studio Iguana | 2023.2.1版本

Android Gradle 插件和 Android Studio 兼容性 Android Studio 构建系统基于 Gradle,并且 Android Gradle 插件 (AGP) 添加了一些特定于构建 Android 应用程序的功能。下表列出了每个版本的 Android Studio 所需的 AGP 版本。 如果特定版本的 Android Studio 不支持…...

并查集(蓝桥杯 C++ 题目 代码 注解)

目录 介绍: 模板: 题目一(合根植物): 代码: 题目二(蓝桥幼儿园): 代码: 题目三(小猪存钱罐): 代码: …...

MapReduce内存参数自动推断

MapReduce内存参数自动推断。在Hadoop 2.0中,为MapReduce作业设置内存参数非常繁琐,涉及到两个参数:mapreduce.{map,reduce}.memory.mb和mapreduce.{map,reduce}.java.opts,一旦设置不合理,则会使得内存资源浪费严重&a…...

pyside6 pytq PyDracula QVideoWidget视频只有画面没有声音

解决方案: 先不使用框架,纯pyside6代码,如果添加视频有画面有声音,那可以排除是硬件问题,如果没有画面只有声音,可能是视频解码器无法解码,换个格式的视频文件如果只有使用PyDracula 出问题&am…...

Axure基础 各元件的作用及介绍

图像热区 增加按钮或者文本的点击区域,他是透明的,在预览时看不见。 动态面板 用来绘制一下带交互效果的元件,他是动态的,如轮播图,一个动态面板里可以有多个子面板,每一个子面板对应着不同的效果。 他…...

学习Java的第六天

目录 一、变量 1、变量的定义 2、变量的声明格式 3、变量的注意事项 4、变量的作用域 二、常量 三、命名规范 Java 语言支持如下运算符: 1、算术运算符 解析图: 示例: 2、赋值运算符 解析图: 示例: 3、关…...

基于Spring Boot+ Vue的房屋租赁系统

末尾获取源码作者介绍:大家好,我是墨韵,本人4年开发经验,专注定制项目开发 更多项目:CSDN主页YAML墨韵 学如逆水行舟,不进则退。学习如赶路,不能慢一步。 目录 一、项目简介 二、开发技术与环…...

多轨迹建模方法的介绍与实操-基于R语言

本文介绍了多轨迹建模方法(Group-Based Multivariate Trajectory Modeling),这是一种扩展了单指标组基轨迹建模的技术,用于分析多个疾病生物标志物或临床重要因素的联合轨迹,以更好地理解和追踪疾病进程、行为或健康状…...

【Spring】Spring状态机

1.什么是状态机 (1). 什么是状态 先来解释什么是“状态”( State )。现实事物是有不同状态的,例如一个自动门,就有 open 和 closed 两种状态。我们通常所说的状态机是有限状态机,也就是被描述的事物的状态的数量是有…...

Node.js基础---使用Express写接口

1. 创建基本的服务器 2. 创建 API 路由模块 // aoiRouter.js 路由模块 const express require(express) const apiRouter express.Router()module.exports apiRouter// ------------------------------------------// app.js 导入并注册路由模块 const apiRouter require(…...

小蓝的钥匙(蓝桥杯错排)

现在有28个小朋友,每个人手上有一把钥匙,每一个钥匙都只能打开自己的房间门,现在将所有钥匙都收上来,然后再随机打乱分给每个小朋友,也就是有28!的分法,请问现在其中14个小朋友的钥匙能恰好打开…...

【Python】科研代码学习:八 FineTune PretrainedModel (用 trainer,用 script);LLM文本生成

【Python】科研代码学习:八 FineTune PretrainedModel [用 trainer,用 script] LLM文本生成 自己整理的 HF 库的核心关系图用 trainer 来微调一个预训练模型用 script 来做训练任务使用 LLM 做生成任务可能犯的错误,以及解决措施 自己整理的 …...

SpringBoot RestTemplate远程调用总结

1、get请求 GetMapping("/searchEntryRecordPageList") public JSONObject searchEntryRecordPageList(RequestParam Map<String,Object> params){HttpHeaders requestHeaders new HttpHeaders();requestHeaders.add("Authorization","Bearer…...

Python 强大邮件处理库 Imbox

目录 IMAP Mailbox Imbox 安装 特性 提取邮件内容 处理附件 安全性 示例 1&#xff1a;读取收件箱中的邮件 2&#xff1a;搜索并下载附件 3&#xff1a;连接到IMAP服务器获取所有邮件 结论 IMAP Mailbox IMAP&#xff08;Internet Message Access Protocol&#x…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技

无需布线的革命&#xff1a;电力载波技术赋能楼宇自控系统 在楼宇自动化领域&#xff0c;传统控制系统依赖复杂的专用通信线路&#xff0c;不仅施工成本高昂&#xff0c;后期维护和扩展也极为不便。电力载波技术&#xff08;PLC&#xff09;的突破性应用&#xff0c;彻底改变了…...