矩阵求导笔记
文章目录
- 1. ML中为什么需要矩阵求导
- 2. 向量函数与矩阵求导初印象
- 3. YX 拉伸术
- 3.1 f(x)为标量,X为列向量
- 3.2 f(x)为列向量,X 为标量
- 3.3 f(x)为列向量,X 为列向量
- 4. 常见矩阵求导公式
1. ML中为什么需要矩阵求导
-
简洁
用方程式表示如下:
y 1 = w 1 X 11 + w 2 X 12 (1) y_1=w_1X_{11}+w_2X_{12}\tag{1} y1=w1X11+w2X12(1)
y 2 = w 1 X 21 + w 2 X 22 (2) y_2=w_1X_{21}+w_2X_{22}\tag{2} y2=w1X21+w2X22(2)
转换成矩阵表示如下:
Y = X W (3) Y=XW\tag{3} Y=XW(3)
Y = [ y 1 y 2 ] , X = [ x 11 x 12 x 21 x 22 ] , W = [ w 1 w 2 ] (4) Y=\begin{bmatrix}y_1\\\\y_2\end{bmatrix},X=\begin{bmatrix}x_{11}&&x_{12}\\\\x_{21}&&x_{22}\end{bmatrix},W=\begin{bmatrix}w_{1}\\\\w_{2}\end{bmatrix}\tag{4} Y= y1y2 ,X= x11x21x12x22 ,W= w1w2 (4) -
快速
当使用python 中的numpy 库时候,在相对于 for 循环,Numpy 本身的计算提速相当快 -
源代码
import time
import numpy as npif __name__ == "__main__":N = 1000000a = np.random.rand(N)b = np.random.rand(N)start = time.time()c = np.dot(a,b)stop = time.time()print(f"c={c}")print("vectorized version: " + str(1000*(stop-start))+"ms")c = 0start1 = time.time()for i in range(N):c += a[i]*b[i]stop1 = time.time()print(f"c={c}")print("for loop: " + str(1000*(stop1-start1))+"ms")times1 = (stop1-start1)/(stop-start)print(f"times1={times1}")
- 结果
c=250071.8870070607
vectorized version: 6.549358367919922ms
c=250071.88700706122
for loop: 265.43641090393066ms
times1=40.52861303239898# 向量化居然比单独的for循环快40倍
2. 向量函数与矩阵求导初印象
- 标量函数:输出为标量的函数
f ( x ) = x 2 ⇒ x ∈ R → x 2 ∈ R f(x)=x^2\Rightarrow x\in R\rightarrow x^2 \in R f(x)=x2⇒x∈R→x2∈R
f ( x ) = x 1 2 + x 2 2 ⇒ [ x 1 x 2 ] ∈ R 2 → x 1 2 + x 2 2 ∈ R f(x)=x_1^2+x_2^2\Rightarrow \begin{bmatrix}x_1\\\\x_2\end{bmatrix}\in R^2\rightarrow x_1^2+x_2^2 \in R f(x)=x12+x22⇒ x1x2 ∈R2→x12+x22∈R - 向量函数:输出为向量或矩阵的函数
<1> 输入标量,输出向量
f ( x ) = [ f 1 ( x ) = x f 2 ( x ) = x 2 ] ⇒ x ∈ R , [ x x 2 ] ∈ R 2 f(x)=\begin{bmatrix}f_1(x)=x\\\\f_2(x)=x^2\end{bmatrix}\Rightarrow x\in R,\begin{bmatrix}x\\\\x^2\end{bmatrix} \in R^2 f(x)= f1(x)=xf2(x)=x2 ⇒x∈R, xx2 ∈R2
<2> 输入标量,输出矩阵
f ( x ) = [ f 11 ( x ) = x f 12 ( x ) = x 2 f 21 ( x ) = x 3 f 22 ( x ) = x 4 ] ⇒ x ∈ R , [ x x 2 x 3 x 4 ] ∈ R 2 × 2 f(x)=\begin{bmatrix}f_{11}(x)=x&&f_{12}(x)=x^2\\\\f_{21}(x)=x^3&&f_{22}(x)=x^4\end{bmatrix}\Rightarrow x\in R,\begin{bmatrix}x&&x^2\\\\x^3&&x^4\end{bmatrix} \in R^{2\times2} f(x)= f11(x)=xf21(x)=x3f12(x)=x2f22(x)=x4 ⇒x∈R, xx3x2x4 ∈R2×2
<3> 输入向量,输出矩阵
f ( x ) = [ f 11 ( x ) = x 1 + x 2 f 12 ( x ) = x 1 2 + x 2 2 f 21 ( x ) = x 1 3 + x 2 3 f 22 ( x ) = x 1 4 + x 2 4 ] ⇒ [ x 1 x 2 ] ∈ R 2 , [ x 1 + x 2 x 1 2 + x 2 2 x 1 3 + x 2 3 x 1 4 + x 2 4 ] ∈ R 2 × 2 f(x)=\begin{bmatrix}f_{11}(x)=x_1+x_2&&f_{12}(x)=x_1^2+x_2^2\\\\f_{21}(x)=x_1^3+x_2^3&&f_{22}(x)=x_1^4+x_2^4\end{bmatrix}\Rightarrow \begin{bmatrix}x_1\\\\x_2\end{bmatrix} \in R^2,\begin{bmatrix}x_1+x_2&&x_1^2+x_2^2\\\\x_1^3+x_2^3&&x_1^4+x_2^4\end{bmatrix} \in R^{2\times2} f(x)= f11(x)=x1+x2f21(x)=x13+x23f12(x)=x12+x22f22(x)=x14+x24 ⇒ x1x2 ∈R2, x1+x2x13+x23x12+x22x14+x24 ∈R2×2 - 总结
矩阵求导的本质
d A d B = 矩阵 A 中的每个元素对矩阵 B 中的每个元素求导 \frac{\mathrm{d}A}{\mathrm{d}B}=矩阵A中的每个元素对矩阵B中的每个元素求导 dBdA=矩阵A中的每个元素对矩阵B中的每个元素求导
3. YX 拉伸术
3.1 f(x)为标量,X为列向量
- 标量不变,向量拉伸
- YX中,Y前面横向拉,X后面纵向拉
d f ( x ) d x , Y = f ( x ) 为标量, X = [ x 1 x 2 ⋮ x n ] 为列向量 \frac{\mathrm{d}f(x)}{\mathrm{d}x},Y=f(x)为标量,X=\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}为列向量 dxdf(x),Y=f(x)为标量,X= x1x2⋮xn 为列向量
f ( x ) = f ( x 1 , x 2 , . . . . , x n ) 为标量 f(x)=f(x_1,x_2,....,x_n)为标量 f(x)=f(x1,x2,....,xn)为标量 - 标量 f ( x ) f(x) f(x)不变,向量X 因为在YX拉伸术中在Y后面,所以向量X纵向拉伸,实际上就是将多元函数的偏导写在一个列向量中
d f ( x ) d x = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dxdf(x)= ∂x1∂f(x)∂x2∂f(x)⋮∂xn∂f(x)
3.2 f(x)为列向量,X 为标量
f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f n ( x ) ] ; X 为标量 f(x)=\begin{bmatrix}f_1(x)\\\\f_2(x)\\\\\vdots\\\\f_n(x)\end{bmatrix};X 为标量 f(x)= f1(x)f2(x)⋮fn(x) ;X为标量
- 标量不变,向量拉伸
- YX中,Y前面横向拉,X后面纵向拉
d f ( x ) d x = [ ∂ f 1 ( x ) ∂ x ∂ f 2 ( x ) ∂ x … ∂ f n ( x ) ∂ x ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x}&&\frac{\partial f_2(x)}{\partial x}&&\dots&&\frac{\partial f_n(x)}{\partial x}\end{bmatrix} dxdf(x)=[∂x∂f1(x)∂x∂f2(x)…∂x∂fn(x)]
3.3 f(x)为列向量,X 为列向量
f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f n ( x ) ] ; X = [ x 1 x 2 ⋮ x n ] 为列向量 f(x)=\begin{bmatrix}f_1(x)\\\\f_2(x)\\\\\vdots\\\\f_n(x)\end{bmatrix};X=\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}为列向量 f(x)= f1(x)f2(x)⋮fn(x) ;X= x1x2⋮xn 为列向量
- 第一步先固定Y ,将 X 纵向拉
d f ( x ) d x = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dxdf(x)= ∂x1∂f(x)∂x2∂f(x)⋮∂xn∂f(x) - 第二步,看每一个项 ∂ f ( x ) ∂ x 1 \frac{\partial f(x)}{\partial x_1} ∂x1∂f(x),其中f(x)为列向量, x 1 x_1 x1为标量,那么可以看出要进行 Y 横向拉
∂ f ( x ) ∂ x 1 = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 1 … ∂ f n ( x ) ∂ x 1 ] \frac{\partial f(x)}{\partial x_1}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x_1}&&\frac{\partial f_2(x)}{\partial x_1}&&\dots&&\frac{\partial f_n(x)}{\partial x_1}\end{bmatrix} ∂x1∂f(x)=[∂x1∂f1(x)∂x1∂f2(x)…∂x1∂fn(x)] - 第三步 ,将每项整合如下
d f ( x ) d x = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 1 … ∂ f n ( x ) ∂ x 1 ∂ f 1 ( x ) ∂ x 2 ∂ f 2 ( x ) ∂ x 2 … ∂ f n ( x ) ∂ x 2 ⋮ ⋮ … ⋮ ∂ f 1 ( x ) ∂ x n ∂ f 2 ( x ) ∂ x n … ∂ f n ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x_1}&&\frac{\partial f_2(x)}{\partial x_1}&&\dots&&\frac{\partial f_n(x)}{\partial x_1}\\\\\frac{\partial f_1(x)}{\partial x_2}&&\frac{\partial f_2(x)}{\partial x_2}&&\dots&&\frac{\partial f_n(x)}{\partial x_2}\\\\\vdots&&\vdots&&\dots&&\vdots\\\\\frac{\partial f_1(x)}{\partial x_n}&&\frac{\partial f_2(x)}{\partial x_n}&&\dots&&\frac{\partial f_n(x)}{\partial x_n}\end{bmatrix} dxdf(x)= ∂x1∂f1(x)∂x2∂f1(x)⋮∂xn∂f1(x)∂x1∂f2(x)∂x2∂f2(x)⋮∂xn∂f2(x)…………∂x1∂fn(x)∂x2∂fn(x)⋮∂xn∂fn(x)
4. 常见矩阵求导公式
4.1 Y = A T X Y=A^TX Y=ATX
f ( x ) = A T X ; A = [ a 1 , a 2 , … , a n ] T ; X = [ x 1 , x 2 , … , x n ] T , 求 d f ( x ) d X f(x)=A^TX;\quad A=[a_1,a_2,\dots,a_n]^T;\quad X=[x_1,x_2,\dots,x_n]^T,求\frac{\mathrm{d}f(x)}{\mathrm{d}X} f(x)=ATX;A=[a1,a2,…,an]T;X=[x1,x2,…,xn]T,求dXdf(x)
- 由于 A T = 1 × n , X = n × 1 , 那么 f ( x ) 为标量,即表示数值 A^T=1\times n,X=n\times1,那么f(x)为标量,即表示数值 AT=1×n,X=n×1,那么f(x)为标量,即表示数值,
- 标量不变,向量拉伸
- YX中,Y前面横向拉,X后面纵向拉
f ( x ) = ∑ i = 1 N a i x i f(x)=\sum_{i=1}^Na_ix_i f(x)=i=1∑Naixi
d f ( x ) d X = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dXdf(x)= ∂x1∂f(x)∂x2∂f(x)⋮∂xn∂f(x) - 可以计算 ∂ f ( x ) ∂ x i \frac{\partial f(x)}{\partial x_i} ∂xi∂f(x)
∂ f ( x ) ∂ x i = a i \frac{\partial f(x)}{\partial x_i}=a_i ∂xi∂f(x)=ai - 可得如下:
d f ( x ) d X = [ a 1 a 2 ⋮ a n ] = A \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}a_1\\\\a_2\\\\\vdots\\\\a_n\end{bmatrix}=A dXdf(x)= a1a2⋮an =A - 结论:
当 f ( x ) = A T X 当f(x)=A^TX 当f(x)=ATX
d f ( x ) d X = A \frac{\mathrm{d}f(x)}{\mathrm{d}X}=A dXdf(x)=A
4.2 Y = X T A X Y=X^TAX Y=XTAX
f ( x ) = X T A X ; A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] ; X = [ x 1 , x 2 , … , x n ] T , 求 d f ( x ) d X f(x)=X^TAX;\quad A=\begin{bmatrix}a_{11}&&a_{12}&&\dots&&a_{1n}\\\\a_{21}&&a_{22}&&\dots&&a_{2n}\\\\\vdots&&\vdots&&\dots&&\vdots\\\\a_{n1}&&a_{n2}&&\dots&&a_{nn}\end{bmatrix};\quad X=[x_1,x_2,\dots,x_n]^T,求\frac{\mathrm{d}f(x)}{\mathrm{d}X} f(x)=XTAX;A= a11a21⋮an1a12a22⋮an2…………a1na2n⋮ann ;X=[x1,x2,…,xn]T,求dXdf(x)
f ( x ) = ∑ i = 1 N ∑ j = 1 N a i j x i x j f(x)=\sum_{i=1}^N\sum_{j=1}^Na_{ij}x_ix_j f(x)=i=1∑Nj=1∑Naijxixj
- 标量不变,YX拉伸术,X纵向拉伸
d f ( x ) d X = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dXdf(x)= ∂x1∂f(x)∂x2∂f(x)⋮∂xn∂f(x)
∂ f ( x ) ∂ x i = [ a i 1 a i 2 … a i n ] [ x 1 x 2 ⋮ x n ] + [ a 1 i a 2 i … a n i ] [ x 1 x 2 ⋮ x n ] \frac{\partial f(x)}{\partial x_i}=\begin{bmatrix}a_{i1}&a_{i2}&\dots&a_{in}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}+\begin{bmatrix}a_{1i}&a_{2i}&\dots&a_{ni}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix} ∂xi∂f(x)=[ai1ai2…ain] x1x2⋮xn +[a1ia2i…ani] x1x2⋮xn
d f ( x ) d X = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] [ x 1 x 2 ⋮ x n ] + [ a 11 a 21 … a n 1 a 12 a 22 … a n 2 ⋮ ⋮ … ⋮ a 1 n a 2 n … a n n ] [ x 1 x 2 ⋮ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\\a_{21}&a_{22}&\dots&a_{2n}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{n1}&a_{n2}&\dots&a_{nn}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}+\begin{bmatrix}a_{11}&a_{21}&\dots&a_{n1}\\\\a_{12}&a_{22}&\dots&a_{n2}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{1n}&a_{2n}&\dots&a_{nn}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix} dXdf(x)= a11a21⋮an1a12a22⋮an2…………a1na2n⋮ann x1x2⋮xn + a11a12⋮a1na21a22⋮a2n…………an1an2⋮ann x1x2⋮xn - 已知 A , A T A,A^T A,AT表示如下:
A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] ; A T = [ a 11 a 21 … a n 1 a 12 a 22 … a n 2 ⋮ ⋮ … ⋮ a 1 n a 2 n … a n n ] A=\begin{bmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\\a_{21}&a_{22}&\dots&a_{2n}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{n1}&a_{n2}&\dots&a_{nn}\end{bmatrix}\quad;A^T=\begin{bmatrix}a_{11}&a_{21}&\dots&a_{n1}\\\\a_{12}&a_{22}&\dots&a_{n2}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{1n}&a_{2n}&\dots&a_{nn}\end{bmatrix} A= a11a21⋮an1a12a22⋮an2…………a1na2n⋮ann ;AT= a11a12⋮a1na21a22⋮a2n…………an1an2⋮ann - 综上所述如下:
当 f ( x ) = X T A X f(x)=X^TAX f(x)=XTAX时
d f ( x ) d X = A X + A T X = ( A + A T ) X \frac{\mathrm{d}f(x)}{\mathrm{d}X}=AX+A^TX=(A+A^T)X dXdf(x)=AX+ATX=(A+AT)X
相关文章:
矩阵求导笔记
文章目录 1. ML中为什么需要矩阵求导2. 向量函数与矩阵求导初印象3. YX 拉伸术3.1 f(x)为标量,X为列向量3.2 f(x)为列向量,X 为标量3.3 f(x)为列向量,X 为列向量 4. 常见矩阵求导公式4.1 Y A T X YA^TX YATX4.2 Y X T A X YX^TAX YXTAX 1…...
全量知识系统问题及SmartChat给出的答复 之19 关于演示模板
Q.60 可参考的演示模版 (word-def occupiedinterest 5type EBsubclass SEBtemplate (script $Demonstrateactor nilobject nildemands nilmethod (scene $Occupyactor nillocation nil))fill (((actor) (top-of *actor-stack*))((method actor) (t…...

Linux学习——线程的控制
目录 编辑 一,线程的创建 二,线程的退出 1,在子线程内return 2,使用pthread_exit(void*) 三,线程等待 四,线程获取自己的id值 五,线程取消 六,线程分离 一,线程的创建 在对…...
Rust常用特型之Drop特型
Rust常用特型之Drop特型.md在Rust标准库中,存在很多常用的工具类特型,它们能帮助我们写出更具有Rust风格的代码。 今天,我们主要学习Drop特型。 (注:本文更多的是对《Programing Rust 2nd Edition》的自己翻译和理解&…...

嵌入式 Linux 学习
在学习嵌入式 Linux 之前,我们先来了解一下嵌入式 Linux 有哪些东西。 1. 嵌入式 Linux 的组成 嵌入式 Linux 系统,就相当于一套完整的 PC 软件系统。 无论你是 Linux 电脑还是 windows 电脑,它们在软件方面的组成都是类似的。 我们一开电…...
Makedown语法
这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…...
SQLite语句
1.重写SQLiteOpenHelper // 例. public class MySQLiteOpenHelper extends SQLiteOpenHelper {public MySQLiteOpenHelper(Nullable Context context, Nullable String name, Nullable SQLiteDatabase.CursorFactory factory, int version) {super(context, name, factory, ve…...

Spring揭秘:Aware接口应用场景及实现原理!
内容概要 Aware接口赋予了Bean更多自感知的能力,通过实现不同的Aware接口,Bean可以轻松地获取到Spring容器中的其他资源引用,像ApplicationContext、BeanFactory等。 这样不仅增强了Bean的功能,还提高了代码的可维护性和扩展性&…...

校园小情书微信小程序,社区小程序前后端开源,校园表白墙交友小程序
功能 表白墙卖舍友步数旅行步数排行榜情侣脸漫画脸个人主页私信站内消息今日话题评论点赞收藏 效果图...
从Pandas到Polars :数据的ETL和查询
对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。 本文将介绍如何将日常的数据ETL和查询过滤的Pandas转换成polars。 图片 Polars的优势 Polars是一个用于Rust和Python的Data…...

Node.Js编码注意事项
Node.js 中不能使用 BOM 和 DOM 的 API,可以使用 console 和定时器 APINode.js 中的顶级对象为 global,也可以用 globalThis 访问顶级对象 浏览器端js的组成 Node.js中的JavaScript组成 相比较之下发现只有console与定时器是两个API所共有的ÿ…...

floodfill算法题目
前言 大家好,我是jiantaoyab,在下面的题目中慢慢体会floodFill算法,虽然是新的算法,但是用的思想和前面的文章几乎一样,代码格式也几乎一样,但不要去背代码 图像渲染 https://leetcode.cn/problems/flood…...

AI相关的实用工具分享
AI实用工具大赏:赋能科研与生活,探索AI的无限可能 前言 在数字化浪潮汹涌而至的今天,人工智能(AI)已经渗透到我们生活的方方面面,无论是工作还是生活,都在悄然发生改变。AI的崛起不仅为我们带…...

K8s — PVC|PV Terminating State
在本文中,我们将讨论PV和PVC一直Terminating的状态。 何时会Terminting? 在以下情况下,资源将处于Terminating状态。 在删除Bounded 状态的PVC之前,删除了对应的PV,PV在删除后是Terminting状态。删除PVC时,仍有引用…...

C语言 --- 指针(5)
目录 一.sizeof和strlen对比 1.sizeof 2.strlen 3.strlen 和sizeof的对比 二.数组和指针笔试题目详解 回顾:数组名的理解 1.一维数组 2.字符数组 代码1: 代码2: 代码3: 代码4: 代码5: 代码6&am…...

Android Studio Iguana | 2023.2.1版本
Android Gradle 插件和 Android Studio 兼容性 Android Studio 构建系统基于 Gradle,并且 Android Gradle 插件 (AGP) 添加了一些特定于构建 Android 应用程序的功能。下表列出了每个版本的 Android Studio 所需的 AGP 版本。 如果特定版本的 Android Studio 不支持…...

并查集(蓝桥杯 C++ 题目 代码 注解)
目录 介绍: 模板: 题目一(合根植物): 代码: 题目二(蓝桥幼儿园): 代码: 题目三(小猪存钱罐): 代码: …...

MapReduce内存参数自动推断
MapReduce内存参数自动推断。在Hadoop 2.0中,为MapReduce作业设置内存参数非常繁琐,涉及到两个参数:mapreduce.{map,reduce}.memory.mb和mapreduce.{map,reduce}.java.opts,一旦设置不合理,则会使得内存资源浪费严重&a…...
pyside6 pytq PyDracula QVideoWidget视频只有画面没有声音
解决方案: 先不使用框架,纯pyside6代码,如果添加视频有画面有声音,那可以排除是硬件问题,如果没有画面只有声音,可能是视频解码器无法解码,换个格式的视频文件如果只有使用PyDracula 出问题&am…...

Axure基础 各元件的作用及介绍
图像热区 增加按钮或者文本的点击区域,他是透明的,在预览时看不见。 动态面板 用来绘制一下带交互效果的元件,他是动态的,如轮播图,一个动态面板里可以有多个子面板,每一个子面板对应着不同的效果。 他…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...