当前位置: 首页 > news >正文

超越 Siri 和 Alexa:探索LLM(大型语言模型)的世界

揭秘LLM:语言模型新革命,智能交互的未来趋势
揭秘LLM:语言模型新革命,智能交互的未来趋势

近年来,虚拟助手的世界发生了重大转变。 虽然 Siri 和 Alexa 本身就是革命性的,但一种称为大型语言模型 (LLM) 的新型人工智能正在将虚拟助手的概念提升到一个全新的水平。 在这篇博文中,我们将深入探讨LLM(大型语言模型)的迷人世界,并探讨他们如何改变我们与技术互动的方式。

什么是LLM(大型语言模型)?
LLM(大型语言模型)是复杂的人工智能系统,旨在理解和生成人类语言。 这些模型接受了大量文本数据的训练,使它们能够学习语言、语法和上下文的复杂性。 与依赖预定义脚本的传统虚拟助理不同,LLM(大型语言模型)能够根据收到的输入生成类似人类的文本响应。

现有最著名的LLM(大型语言模型)之一是由 OpenAI 开发的 GPT-4。 GPT-4 代表“生成式预训练 Transformer 4”,以其令人印象深刻的语言能力而闻名。 它拥有惊人的 2500 亿个参数,使其成为迄今为止最大的语言模型之一。

LLM(大型语言模型)的多功能性
LLM(大型语言模型)与 Siri 和 Alexa 等早期虚拟助手的区别在于其多功能性。 LLM(大型语言模型)可以执行广泛的语言相关任务,包括:

1.自然语言理解(NLU)
LLM(大型语言模型)擅长理解人类语言的细微差别。 他们可以分析文本输入,理解用户查询,并从非结构化文本数据中提取有意义的信息。 这使它们成为聊天机器人、客户支持和情绪分析等应用程序的理想选择。

2. 内容生成
LLM(大型语言模型)可以生成各种风格和语气的类人文本。 他们可以创作文章、编写代码、创作诗歌,甚至起草法律文件。 内容创作者和作家发现LLM(大型语言模型)对于产生想法和提高写作水平非常有用。

3. 语言翻译
多亏了LLM(大型语言模型),语言障碍不再是不可克服的。 他们可以非常准确地将文本从一种语言翻译成另一种语言,这使其成为全球交流的宝贵工具。

4. 私人助理
LLM(大型语言模型)可以充当高度个性化的虚拟助理,帮助用户完成安排约会、设置提醒和回答一般知识问题等任务。 他们理解上下文的能力使交互更加自然和直观。

LLM(大型语言模型)的应用
LLM(大型语言模型)的应用实际上是无限的。 它们正在融入广泛的行业和领域,包括:

1. 医疗保健
LLM(大型语言模型)可以通过分析患者记录、生成医疗报告,甚至提供有关症状和治疗的信息来协助医疗专业人员。

2. 教育
在教育领域,LLM(大型语言模型)用于创建教育内容、提供辅导帮助和自动化管理任务。

3. 财务
LLM(大型语言模型)在金融领域从事风险评估、欺诈检测和财务分析等任务。 他们可以快速准确地处理大量财务数据。

4.创意艺术
艺术家和设计师利用LLM(大型语言模型)来产生想法、创作艺术描述,甚至创作音乐。

5. 研究
研究人员可以从LLM(大型语言模型)的自然语言处理任务中受益,例如总结研究论文、提取关键信息和生成假设。

LLM(大型语言模型)的未来
随着LLM(大型语言模型)技术的不断发展,我们可以期待在不久的将来会有更多令人兴奋的发展。 研究人员正在致力于改善LLM(大型语言模型)的道德和负责任的使用,解决对偏见和错误信息的担忧。

总之,像 GPT-4 这样的大型语言模型正在开创虚拟助手的新时代,它比以往任何时候都更智能、更通用、能力更强。 凭借理解和生成人类语言的能力,LLM(大型语言模型)有望以我们刚刚开始想象的方式彻底改变行业并改善我们的日常生活。 Siri 和 Alexa 只是开始; LLM(大型语言模型)的世界正在开启一个充满可能性的世界,我们迫不及待地想要探索。

关于Kompas AI 

Kompas AI 是一个专为各个业务领域的专业人士和团队设计的平台,旨在提高生产力和参与度。 它非常适合个人使用,同样适合团队协作,使其成为领导者、销售人员、顾问、工程师和支持人员的首选工具。

Kompas AI 提供了与 ChatGPT、Bard、Claude 等多个对话式 AI 交互的统一界面,允许用户根据需要与不同的 AI 进行交互。 它加强了团队成员之间的沟通,最大限度地提高了工作效率,并提供了跨各种工作环境的实时智能支持的机会。 Kompas AI的灵活性使用户能够根据自己的工作方式定制AI,支持每个人和团队以更智能、更高效的方式工作。

欲了解更多信息,请访问我们的网站。

相关文章:

超越 Siri 和 Alexa:探索LLM(大型语言模型)的世界

揭秘LLM:语言模型新革命,智能交互的未来趋势 近年来,虚拟助手的世界发生了重大转变。 虽然 Siri 和 Alexa 本身就是革命性的,但一种称为大型语言模型 (LLM) 的新型人工智能正在将虚拟助手的概念提升到一个全新的水平。 在这篇博文…...

Linux删除Mysql

//rpm包安装方式卸载 查包名:rpm -qa|grep -i mysql 删除命令:rpm -e –nodeps 包名//yum安装方式下载 1.查看已安装的mysql 命令:rpm -qa | grep -i mysql 2.卸载mysql 命令:yum remove mysql-community-server-5.6.36-2.el7.x86…...

CNN中常见的池化操作有哪些,作用是什么?

CNN中常见的池化操作有哪些,作用是什么? CNN中常见的池化操作只要是两种,平均值池化和最大值池化最大值池化常用于分类任务,是指在输入数据的局部区域内取最大值作为输出。最大池化的作用是降低特征图的尺寸,减少参数…...

能打印单据的软件,如进出库单据,物流快运单据,定制单据样式

能打印单据的软件,如进出库单据,物流快运单据,定制单据样式 一、前言 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、不同行业打印的单据不同 2、同一个行业打印的样式可能不同 3、有的行业已经印刷好了许多打印…...

uniapp列表进入动画

app列表入场动画 - DCloud 插件市场 列表入场动画https://ext.dcloud.net.cn/plugin?id16957...

FPGA TestBench编写学习

1 timescale 1.1 简介 timescale指令用于指定编译器在处理仿真时的时间单位和时间精度。这个指令通常在模块的顶层声明中使用&#xff0c;它告诉编译器和仿真器如何解释代码中的时间值。 timescale指令的语法如下&#xff1a; timescale <time_unit> <time_precis…...

Centos7 安装mongoDB

下载安装包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.12.tgz 解压 tar -zxvf mongodb-linux-x86_64-3.2.12.tgz移动到指定位置 mv mongodb-linux-x86_64-3.2.12/ /usr/local/mongodb在/usr/local/mongodb下创建文件夹 cd /usr/local/mongodb m…...

Redis冲冲冲——Redis持久化方式及其区别

目录 引出Redis持久化方式Redis入门1.Redis是什么&#xff1f;2.Redis里面存Java对象 Redis进阶1.雪崩/ 击穿 / 穿透2.Redis高可用-主从哨兵3.持久化RDB和AOF4.Redis未授权访问漏洞5.Redis里面安装BloomFilte Redis的应用1.验证码2.Redis高并发抢购3.缓存预热用户注册验证码4.R…...

谷粒商城【成神路】-【10】——缓存

目录 &#x1f9c2;1.引入缓存的优势 &#x1f953;2.哪些数据适合放入缓存 &#x1f32d;3.使用redis作为缓存组件 &#x1f37f;4.redis存在的问题 &#x1f9c8;5.添加本地锁 &#x1f95e;6.添加分布式锁 &#x1f95a;7.整合redisson作为分布式锁 &#x1f697…...

Facebook、亚马逊账号如何养号?

之前我们讨论过很多关于代理器的问题。它们的工作原理是什么?在不同的软件中要使用那些代理服务器?这些代理服务器之间的区别是什么?什么是反检测浏览器等等。 除了这些问题&#xff0c;相信很多人也会关心在使用不同平台的时代理器的选择问题。比如&#xff0c;为什么最好…...

Milvus的相似度指标

官网&#xff1a;https://milvus.io/docs/metric.md版本: v2.3.x 在 Milvus 中&#xff0c;相似度度量用于衡量向量之间的相似度。选择良好的距离度量有助于显着提高分类和聚类性能。下表展示了这些广泛使用的相似性指标如何与各种输入数据形式和 Milvus 索引相匹配。 一、浮…...

如何在unity中实现倒计时

public class showtime : MonoBehaviour {public TextMeshProUGUI Countdown;void Update(){if (Input.GetKeyDown(KeyCode.Space))//如果按下空格后开始倒计时{StartCoroutine(hahaha());}}IEnumerator hahaha()//声明了一个协程函数 hahaha{int time 10;Countdown.text tim…...

蓝桥杯简单题,公司名称

题目链接&#xff08;需要登录&#xff09; #include <iostream> #include <cstring> #include <algorithm> using namespace std; bool lanqiao(string str,int len){ sort(str.begin(),str.end());//对str按照ascii排序if(str.find("Laainoq")s…...

【linux】02 :Linux基础命令

1.掌握linux系统的目录结构 linux只有一个顶级目录&#xff0c;称之为&#xff1a;根目录。 windows系统有多个顶级目录&#xff0c;即各个盘符。 2.linux路径的描述方式 /在Linux中的表示&#xff1a;出现在开头表示根目录&#xff0c;出现在后面表示层级关系。 3.什么是命…...

AOP切面编程,以及自定义注解实现切面

AOP切面编程 通知类型表达式重用表达式切面优先级使用注解开发&#xff0c;加上注解实现某些功能 简介 动态代理分为JDK动态代理和cglib动态代理当目标类有接口的情况使用JDK动态代理和cglib动态代理&#xff0c;没有接口时只能使用cglib动态代理JDK动态代理动态生成的代理类…...

C70600 CuNi10Fe1Mn铜合金深冲性能好

C70600 CuNi10Fe1Mn铜合金深冲性能好CW608N-R460、CW608N-H135、CuZn36Pb2As-R370、CuZn38Pb1-R460、CW607N-H120、CuZn38Pb1-H120、CW602N-H080、CW608N-H105、CuZn39Pb0.5-R460、CuZn39Pb0.5-H120、CW608N-H120、CuZn38Pb1-R470、CW607N-H080、CW607N-R470、CW607N-H105、CuZ…...

算法学习05:离散化、区间合并

算法学习05&#xff1a;离散化、区间合并 文章目录 算法学习05&#xff1a;离散化、区间合并前言需要记忆的模版&#xff1a;一、离散化1.例题&#xff1a;离散化 区间和&#xff1a;拓展: 二、区间合并&#xff08;贪心&#xff09;1.例题&#xff1a; 总结 前言 需要记忆的模…...

内部审计2.0时代:数字化工具和方法全面升级

文章目录 一、内部审计的发展阶段二、内部审计的逻辑架构三、内部审计数字化转型面临的问题&#xff08;1&#xff09;缺少内部审计数字化转型规划和方案&#xff08;2&#xff09;非结构化数据的采集和后续利用不足&#xff08;3&#xff09;依赖编程或使用新工具的数据分析能…...

五子棋小游戏(sut实验报告)

实验目的 实现人与人或人与电脑进行五子棋对弈 实验内容 启动游戏&#xff0c;显示游戏参数设置界面&#xff0c;用户输入参数后进入游戏界面&#xff0c;显示棋盘及双方博弈过程&#xff0c;游戏过程中可选择退出游戏。判定一方获胜后结束本局游戏&#xff0c;可选择继续下…...

图像超分辨率算法ESRGAN原理及应用

前言 图像超分辨率算法是一种用于增加图像分辨率的算法,与传统的图像缩放算法不同的是,超分算法在放大图像的同时根据原图纹理生成更多细节,确保图像在放大后仍然有清晰的纹理细节。 一、模型简介 1、模型开源地址 GitHub - xinntao/ESRGAN: ECCV18 Workshops - Enhance…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...