当前位置: 首页 > news >正文

【智能算法】蜻蜓算法(DA)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2016年,Mirjalili受到蜻蜓静态和动态集群行为启发,提出了蜻蜓算法(Dragonfly algorithm, DA)。

2.算法原理

2.1算法思想

蜻蜓集群有两种行为目的:狩猎(静态集群)和迁徙(动态集群)。静态集群中,蜻蜓分成小群捕猎,局部移动和突然飞行路径变化是其特征。动态集群则是大量蜻蜓在单一方向上长距离迁徙。这两种行为类似于元启发式优化中的探索和开发利用阶段,静态集群探索不同区域,而动态集群利用大群体沿着一个方向飞行。

2.2算法过程

在这里插入图片描述

群体的行为遵循三个基本原则:

  • 分离(Separation):指个体在邻域内静态地避免与其他个体碰撞
  • 对齐(Alignment):表示个体的速度与邻域内其他个体的速度匹配
  • 凝聚(Cohesion):指个体朝向邻域质心的趋势
    分离
    S i = − ∑ j = 1 N X i − X j S_i=-\sum_{j=1}^NX_i-X_j Si=j=1NXiXj
    其中, X j X_j Xj表示第 i i i只蜻蜓领域内其他蜻蜓, S i S_i Si表示第 i i i只蜻蜓分离位置向量。
    对齐
    A i = ∑ j = 1 N V j N A_{i}=\frac{\sum_{j=1}^{N}V_{j}}{N} Ai=Nj=1NVj
    其中, A i A_i Ai表示第 i i i只蜻蜓与领域内其他蜻蜓对齐的位置向量。
    凝聚
    C i = ∑ j = 1 N X j N − X i C_i=\frac{\sum_{j=1}^NX_j}N-X_i Ci=Nj=1NXjXi
    其中, C i C_i Ci示第 i i i只蜻蜓凝聚时的位置向量。
    寻找食物
    F i = X + − X i F_i=X^+-X_i Fi=X+Xi
    其中, X + X^+ X+表示猎物位置。
    躲避天敌
    E i = X − + X i E_i=X^-+X_i Ei=X+Xi
    其中, X − X^- X表示天敌位置。
    位置更新
    Δ X t + 1 = ( s S i + a A i + c C i + f F i + e E i ) + w Δ X t X t + 1 = X t + Δ X t + 1 \Delta X_{t+1}=(sS_i+aA_i+cC_i+fF_i+eE_i)+w\Delta X_t \\ X_{t+1}=X_t+\Delta X_{t+1} ΔXt+1=(sSi+aAi+cCi+fFi+eEi)+wΔXtXt+1=Xt+ΔXt+1
    式中参数均为权重因子。
    为了提高DA随机性和探索能力,当没有邻近解时,它们需要在搜索空间中进行Lévy飞行:
    X t + 1 = X t + L e ˊ vy ( d ) × X t X_{t+1}=X_t+\text{Lévy}(d)\times X_t Xt+1=Xt+Leˊvy(d)×Xt
    Lévy函数表述如下(Mantegna算法):
    L e ˊ vy ( x ) = 0.01 × r 1 × σ ∣ r 2 ∣ 1 β σ = ( Γ ( 1 + β ) × sin ⁡ ( π β 2 ) Γ ( 1 + β 2 ) × β × 2 ( β − 1 2 ) ) 1 / β \text{Lévy}(x)=0.01\times\frac{r_1\times\sigma}{|r_2|^{\frac1\beta}} \\ \sigma=\left(\frac{\Gamma(1+\beta)\times\sin\left(\frac{\pi\beta}{2}\right)}{\Gamma\left(\frac{1+\beta}{2}\right)\times\beta\times2^{\left(\frac{\beta-1}{2}\right)}}\right)^{1/\beta} Leˊvy(x)=0.01×r2β1r1×σσ= Γ(21+β)×β×2(2β1)Γ(1+β)×sin(2πβ) 1/β
    伪代码
    在这里插入图片描述

3.代码实现

% 蜻蜓优化算法
function [Best_pos,Best_fitness,Iter_curve,History_pos, History_best]=DA(pop, dim, ub,lb, fobj, maxIter)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 记录
Iter_curve=zeros(1,maxIter);
r=(ub-lb)/10;
Delta_max=(ub-lb)/10;
Food_fitness=inf;
Food_pos=zeros(dim,1);
Enemy_fitness=-inf;
Enemy_pos=zeros(dim,1);
%% 初始化
X=initialization(pop,dim,ub,lb);
Fitness=zeros(1,pop);
DeltaX=initialization(pop,dim,ub,lb);
%% 迭代
for iter=1:maxIterr=(ub-lb)/4+((ub-lb)*(iter/maxIter)*2);w=0.9-iter*((0.9-0.4)/maxIter);my_c=0.1-iter*((0.1-0)/(maxIter/2));if my_c<0my_c=0;ends=2*rand*my_c; % Seperation weighta=2*rand*my_c; % Alignment weightc=2*rand*my_c; % Cohesion weightf=2*rand;      % Food attraction weighte=my_c;        % Enemy distraction weightfor i=1:pop %Calculate all the objective values firstFitness(1,i)=fobj(X(:,i)');if Fitness(1,i)<Food_fitnessFood_fitness=Fitness(1,i);Food_pos=X(:,i);endif Fitness(1,i)>Enemy_fitnessif all(X(:,i)<ub') && all( X(:,i)>lb')Enemy_fitness=Fitness(1,i);Enemy_pos=X(:,i);endendendfor i=1:popindex=0;neighbours_no=0;clear Neighbours_DeltaXclear Neighbours_Xfor j=1:popDist2Enemy=distance(X(:,i),X(:,j));if (all(Dist2Enemy<=r) && all(Dist2Enemy~=0))index=index+1;neighbours_no=neighbours_no+1;Neighbours_DeltaX(:,index)=DeltaX(:,j);Neighbours_X(:,index)=X(:,j);endend% 分离% Eq. (3.1)S=zeros(dim,1);if neighbours_no>1for k=1:neighbours_noS=S+(Neighbours_X(:,k)-X(:,i));endS=-S;elseS=zeros(dim,1);end% 对齐% Eq. (3.2)if neighbours_no>1A=(sum(Neighbours_DeltaX')')/neighbours_no;elseA=DeltaX(:,i);end% 凝聚% Eq. (3.3)if neighbours_no>1C_temp=(sum(Neighbours_X')')/neighbours_no;elseC_temp=X(:,i);endC=C_temp-X(:,i);% 寻找食物% Eq. (3.4)Dist2Food=distance(X(:,i),Food_pos(:,1));if all(Dist2Food<=r)F=Food_pos-X(:,i);elseF=0;end% 躲避天敌% Eq. (3.5)Dist2Enemy=distance(X(:,i),Enemy_pos(:,1));if all(Dist2Enemy<=r)Enemy=Enemy_pos+X(:,i);elseEnemy=zeros(dim,1);endfor tt=1:dimif X(tt,i)>ub(tt)X(tt,i)=lb(tt);DeltaX(tt,i)=rand;endif X(tt,i)<lb(tt)X(tt,i)=ub(tt);DeltaX(tt,i)=rand;endendif any(Dist2Food>r)if neighbours_no>1for j=1:dimDeltaX(j,i)=w*DeltaX(j,i)+rand*A(j,1)+rand*C(j,1)+rand*S(j,1);if DeltaX(j,i)>Delta_max(j)DeltaX(j,i)=Delta_max(j);endif DeltaX(j,i)<-Delta_max(j)DeltaX(j,i)=-Delta_max(j);endX(j,i)=X(j,i)+DeltaX(j,i);endelse% Eq. (3.8)X(:,i)=X(:,i)+Levy(dim)'.*X(:,i);DeltaX(:,i)=0;endelsefor j=1:dim% Eq. (3.6)DeltaX(j,i)=(a*A(j,1)+c*C(j,1)+s*S(j,1)+f*F(j,1)+e*Enemy(j,1)) + w*DeltaX(j,i);if DeltaX(j,i)>Delta_max(j)DeltaX(j,i)=Delta_max(j);endif DeltaX(j,i)<-Delta_max(j)DeltaX(j,i)=-Delta_max(j);endX(j,i)=X(j,i)+DeltaX(j,i);end endFlag4ub=X(:,i)>ub';Flag4lb=X(:,i)<lb';X(:,i)=(X(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;endBest_fitness=Food_fitness;Best_pos=Food_pos;Iter_curve(iter)=Best_fitness;History_pos{iter} = X;History_best{iter} = Best_pos;
end
end
%% 欧式距离
function o = distance(a,b)for i=1:size(a,1)o(1,i)=sqrt((a(i)-b(i))^2);
end
end
%% 位置初始化
function Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); if Boundary_no==1ub_new=ones(1,dim)*ub;lb_new=ones(1,dim)*lb;
elseub_new=ub;lb_new=lb;   
end
for i=1:dimub_i=ub_new(i);lb_i=lb_new(i);Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
endPositions=Positions';
end
%% Levy飞行
function o=Levy(d)beta=3/2;
%Eq. (3.10)
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
u=randn(1,d)*sigma;
v=randn(1,d);
step=u./abs(v).^(1/beta);% Eq. (3.9)
o=0.01*step;
end

在这里插入图片描述

4.参考文献

[1] Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural computing and applications, 2016, 27: 1053-1073.
[2] Mantegna RN. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic process. Phys Rev E 1994;49(5):4677–83.

相关文章:

【智能算法】蜻蜓算法(DA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.代码实现4.参考文献 1.背景 2016年&#xff0c;Mirjalili受到蜻蜓静态和动态集群行为启发&#xff0c;提出了蜻蜓算法(Dragonfly algorithm, DA)。 2.算法原理 2.1算法思想 蜻蜓集群有两种行为目的&#xff1a;狩猎&#xf…...

用A*算法求解八数码问题

用A*算法求解八数码问题 实现两种启发函数实现A*算法测试 实现两种启发函数 采取两种策略实现启发函数&#xff1a; 策略1&#xff1a;不在目标位置的数字个数策略2&#xff1a;曼哈顿距离&#xff08;将数字直接移动到对应位置的步数总数&#xff09; # 策略1: 不在目标位置…...

分布式之Ribbon使用以及原理

Ribbon使用以及原理 1、负载均衡的两种方式 服务器端负载均衡 传统的方式前端发送请求会到我们的的nginx上去&#xff0c;nginx作为反向代理&#xff0c;然后路由给后端的服务器&#xff0c;由于负载均衡算法是nginx提供的&#xff0c;而nginx是部署到服务器端的&#xff0c;所…...

android JNI float *转MutableList

data class Test(var data:MutableList<Float> )JNIEXPORT void JNICALL Java_NativeUtils_assignFloatArrayToHealth(JNIEnv *env, jclass clazz, jobject obj, jfloatArray cData) {jclass objClass env->GetObjectClass(obj);// 获取 Test类中的 data 属性jfieldI…...

chatgpt与人类有何不同?

ChatGPT和人类之间存在多个显著的差异。 首先&#xff0c;ChatGPT是一种基于人工智能技术的计算机程序&#xff0c;通过机器学习和自然语言处理等技术&#xff0c;从大量的数据中获取知识并生成语言输出。它主要依赖于算法和数据进行工作&#xff0c;能够迅速处理和检索信息&a…...

论文笔记:Evaluating the Performance of Large Language Models on GAOKAO Benchmark

1 论文思路 采用zero-shot prompting的方式&#xff0c;将试题转化为ChatGPT的输入 对于数学题&#xff0c;将公式转化为latex输入 主观题由专业教师打分 2 数据 2010~2022年&#xff0c;一共13年间的全国A卷和全国B卷 3 结论 3.1 不同模型的zeroshot 高考总分 3.2 各科主…...

MySQL 数据库查询与数据操作:使用 ORDER BY 排序和 DELETE 删除记录

使用 ORDER BY 进行排序 使用 ORDER BY 语句按升序或降序对结果进行排序。 ORDER BY 关键字默认按升序排序。要按降序排序结果&#xff0c;使用 DESC 关键字。 示例按名称按字母顺序排序结果&#xff1a; import mysql.connectormydb mysql.connector.connect(host"l…...

数据结构入门(3)2.链表接口实现

目录 前言 头文件 动态申请一个结点 单链表打印 单链表尾插 单链表的头插 单链表的尾删 单链表头删 单链表查找 单链表在pos位置之后插入x 单链表删除pos位置之后的值 在pos的前面插入 删除pos位置 销毁顺序表 前言 本文将介绍链表常见的功能的实现 头文件 #…...

vscode中解决驱动编写的时候static int __init chrdev_init()报错的问题

目录 错误出错原因解决方法 错误 在入口函数上&#xff0c;出现 expected a ; 这样的提示 出错原因 缺少了 __KERNEL __ 宏定义 解决方法 补上__KERNEL__宏定义 具体做法&#xff1a;在vscode中按下ctrlshiftp &#xff0c;输入&#xff1a;C/C:Edit Configurations&#xff0…...

fastgpt本地详细部署以及配置

目录 一、Docker部署1、docker安装2、docker启动3、添加用户到 docker 组:4、验证 Docker 安装:二、one_api 本地部署1、linux系统部署2、windows系统部署三、向量模型部署(m3e)四、chatglm2模型本地部署五、fastgpt模型本地部署1、下载配置文件2、文件配置--docker-compos…...

【故障分类】基于注意力机制的卷积神经网络结合双向长短记忆神经网络CNN-BiLSTM-attention实现数据分类附matlab代码

摘要&#xff1a; ntion机制加权 4. 加权后的特征进行分类 需求分析 本文旨在实现一个通用的数据分类模型&#xff0c;可应用于不同领域的数据分类任务。 设计方案 设计一个CNN网络结构&#xff0c;提取输入数据的特征 将特征序列输入到BiLSTM网络&#xff0c;进行时序建模…...

vue接入百度地图获取经纬度

通过城市名称和城市中心经纬度来获取当前所在地图&#xff0c;当前经纬度中心获取可以通过后端获取 静态文件包&#xff0c;替换baidu.html中的ak值&#xff0c;ak值通过百度地图官方网站申请 申请&#xff1a;百度地图API申请步骤 - 知乎 代码示例文件&#xff1a; 链接&a…...

交流负载箱的特点和优势有哪些?

交流负载箱广泛应用于电力系统、新能源、轨道交通、航空航天等领域。它具有以下特点和优势&#xff1a; 1. 灵活性高&#xff1a;交流负载箱可以根据实际需求&#xff0c;调整输出电流、电压、功率等参数&#xff0c;以满足不同场景下的测试需求。同时&#xff0c;它还可以实现…...

Java线程锁之Lock的使用

Lock 的使用 Lock 是java 1.5 中引入的线程同步工具&#xff0c;它主要用于多线程下共享资源的控制。本质上Lock 仅仅是一个接口&#xff0c; 可以通过显式定义同步锁对象来实现同步&#xff0c;能够提供比synchronized 更广泛的锁定操作&#xff0c;并支持多个相关的 Lock接…...

简站wordpress主题看上去差不多 实际大不一样

有人说简站wordpress主题&#xff0c;都差不多嘛。我表示无语。表面看上去是差不多的&#xff0c;实际的细节是不一样的。 下面以编号&#xff1a;JZP4431和编号&#xff1a;JZP4878这两个主题为例子来讲一下&#xff0c;简站wordpress主题&#xff0c;在细节方面的不一样之处…...

(完美方案)解决mfc140u.dll文件丢失问题,快速且有效的修复

唉&#xff0c;又是丢失了mfc140u.dll&#xff0c;这该怎么办呢&#xff1f;如果你的电脑突然找不到或丢失mfc140u.dll文件&#xff0c;那就真是太糟糕了。别担心&#xff0c;我分享给你一些干货&#xff0c;告诉你如何快速解决mfc140u.dll丢失的问题。 一.mfc140u.dll属性功能…...

并发通信(网络进程线程)

如果为每个客户端创建一个进程&#xff08;或线程&#xff09;&#xff0c;因为linux系统文件标识符最多1024位&#xff0c;是有限的。 所以使用IO复用技术&#xff0c;提高并发程度。 阻塞与非阻塞 阻塞式复用 非阻塞复用 信号驱动IO 在属主进程&#xff08;线程中声明&…...

WPF 该线程是用不接受参数的 ThreadStart 委托创建的。

创建无参数线程是无法发去传递参数的&#xff0c;需要把 《 thread.Start(“张三”); 》改为《 thread.Start(); 》 把参数去掉就可以了。 public RegisterWindow(){InitializeComponent();//无参数线程Thread thread new Thread(pageLoad);thread.IsBackground true;//thr…...

FreeRTOS学习第9篇--队列介绍

目录 FreeRTOS学习第9篇--队列介绍1. 数据传输的方法1.1 任务之间如何传输数据1.2 队列的本质 2. 队列的工作原理和实现2.1 创建队列2.2 向队列发送数据2.3 从队列接收数据 3. 使用队列进行任务间的通信3.1 通信示例3.2 同步示例 结论 FreeRTOS学习第9篇–队列介绍 本文目标&a…...

qt如何配置ros环境

在Qt5.7的版本可以使用bash -i -c来启动qt&#xff0c;让Qt自己识别系统环境&#xff0c;不知道为什么Qt在之后的版本&#xff0c;这样使用都失效了。因为它会默认把CMAKE_PREFIX_PATH修改掉。 网上还有安装ros插件版本的qt creator&#xff0c;感觉失去了一些灵活性。 自己测试…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...