【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
1,关于 fastllm 项目
https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source=4b290247452adda4e56d84b659b0c8a2
【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
https://github.com/ztxz16/fastllm
🚀 纯c++实现,便于跨平台移植,可以在安卓上直接编译
🚀 ARM平台支持NEON指令集加速,X86平台支持AVX指令集加速,NVIDIA平台支持CUDA加速,各个平台速度都很快就是了
🚀 支持浮点模型(FP32), 半精度模型(FP16), 量化模型(INT8, INT4) 加速
🚀 支持多卡部署,支持GPU + CPU混合部署
🚀 支持Batch速度优化
🚀 支持并发计算时动态拼Batch
🚀 支持流式输出,很方便实现打字机效果
🚀 支持python调用
🚀 前后端分离设计,便于支持新的计算设备
🚀 目前支持ChatGLM系列模型,各种LLAMA模型(ALPACA, VICUNA等),BAICHUAN模型,QWEN模型,MOSS模型,MINICPM模型等
2,本地CPU编译也非常方便
git clone https://github.com/ztxz16/fastllm.gitcd fastllm
mkdir build
cd build
cmake .. -DUSE_CUDA=OFF
make -j
3,运行webui 可以进行交互问答
文件下载:
https://hf-mirror.com/huangyuyang/chatglm2-6b-int4.flm
./webui -p /data/home/test/hf_cache/chatglm2-6b-int4.flm
Load (200 / 200)
Warmup…
finish.
please open http://127.0.0.1:8081

也有打字效果,不知道是咋实现的。好像不是stream 方式的。
3,速度还可以,同时也支持其他的模型
文档地址:
https://github.com/ztxz16/fastllm/blob/master/docs/llama_cookbook.md
LLaMA 类模型转换参考
这个文档提供了了转换LLaMA同结构模型的方法。
LLaMA类模型有着基本相同的结构,但权重和prompt构造有差异。在fastllm中,通过转转模型时修改部分配置,实现对这些变体模型的支持、
声明
以下配置方案根据模型的源代码整理,不保证模型推理结果与原版完全一致。
修改方式
目前,转换脚本和两行加速方式均可用于llama类模型。但无论采用哪一种方式,都需要预留足够的内存(可以用swap空间)。
在float16模式下,转换时约需要4×参数量+1GB的空闲内存。
转换脚本
这里以支持推理各类Llama结构的基座模型为例,介绍如何应用本文档。
- 方案一:修改转换脚本
以alpaca2flm.py为模板修改。在创建model之后添加:
model = LlamaForCausalLM.from_pretrained(model_name).float()# config.json中定义了自己的model_type的需要添加conf = model.config.__dict__conf["model_type"] = "llama"# 接下来的部分各个Chat模型有差别,Base模型有的需要添加pre_prompt。torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "", bot_role = "", history_sep = "", dtype = dtype)
其中,pre_prompt 、user_role 、bot_role 、history_sep分别为“开始的系统提示词(第一轮对话之前)”,“用户角色标志”,“用户话语结束标志及模型回复开始标志”,“两轮对话之间的分隔符”。
- 方案二:修改config.json
在下载的模型目录下,修改配置文件config.json中,修改"model_type"为llama,并增加下面的键-值对:
"pre_prompt": "","user_role": "","bot_role": "","history_sep": "",
如需添加Token ID而非字符串(类似baichuan-chat模型),可以使用“<FLM_FIX_TOKEN_{ID}>”的格式添加。
- 执行脚本
python3 tools/alpaca2flm.py [输出文件名] [精度] [原始模型名称或路径]
对齐tokenizer
如果想使fastllm模型和原版transformers模型基本一致,最主要的操作是对齐tokenizer。
如果模型使用了huggingface 加速版本的Tokenizers(即模型目录中包含tokenizer.json并优先使用),目前的转换脚本仅在从本地文件转换时,能够对齐tokenizer。
注意检查原始tokenizer的encode()方法返回的结果前面是否会加空格。如果原始tokenizer没有加空格,则需要设置:
conf["tokenizer_add_dummy_prefix"] = False
Base Model
一部分模型需要制定bos_token_id,假设bos_token_id为1则可以配置如下:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "", bot_role = "", history_sep = "", dtype = dtype)
Chat Model
对Chat Model,同样是修改转换脚本,或修改模型的config.json,以下是目前常见的chat model的配置:
InternLM(书生)
- internlm/internlm-chat-7b
- internlm/internlm-chat-7b v1.1
- internlm/internlm-chat-20b
conf = model.config.__dict__conf["model_type"] = "llama"torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<s><s>", user_role = "<|User|>:", bot_role = "<eoh>\n<|Bot|>:", history_sep = "<eoa>\n<s>", dtype = dtype)
可以直接使用llamalike2flm.py脚本转换:
cd build
python3 tools/llamalike2flm.py internlm-7b-fp16.flm float16 internlm/internlm-chat-20b #导出float16模型
python3 tools/llamalike2flm.py internlm-7b-int8.flm int8 internlm/internlm-chat-20b #导出int8模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm int4 internlm/internlm-chat-20b #导出int4模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm float16 internlm/internlm-chat-7b #导出internlm-chat-7b float16模型
XVERSE
- xverse/XVERSE-13B-Chat
- xverse/XVERSE-7B-Chat
conf = model.config.__dict__conf["model_type"] = "llama"conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)
XVERSE-13B-Chat V1 版本需要对输入做NFKC规范化,fastllm暂不支持,因此需要使用原始tokenizer.
- xverse/XVERSE-13B-256K
该模型没有将RoPE外推参数放到config中,因此需要手工指定:
conf = model.config.__dict__conf["model_type"] = "llama"conf["rope_theta"] = 500000conf["rope_scaling.type"] = "dynamic"conf["rope_scaling.factor"] = 2.0conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)
其他 llama1 系列
- Vicuna v1.1 v1.3
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="A chat between a curious user and an artificial intelligence assistant. ""The assistant gives helpful, detailed, and polite answers to the user's questions. "user_role="USER: ", bot_role=" ASSISTANT:", history_sep="<s>", dtype=dtype)
- BiLLa
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "\n", user_role = "Human: ", bot_role = "\nAssistant: ", history_sep = "\n", dtype = dtype)
llama2-chat
- meta-llama/Llama-2-chat
| Model | Llama2-chat | Llama2-chat-hf |
|---|---|---|
| 7B | meta-llama/Llama-2-7b-chat | meta-llama/Llama-2-7b-chat-hf |
| 13B | meta-llama/Llama-2-13b-chat | meta-llama/Llama-2-13b-chat-hf |
| Model | CodeLlama-Instruct |
|---|---|
| 7B | codellama/CodeLlama-7b-Instruct-hf |
| 13B | codellama/CodeLlama-13b-Instruct-hf |
官方示例代码中,可以不用系统提示语:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "[INST] ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
Llama-2系列支持系统提示语需要修改代码,单轮可以使用以下带有系统提示语的版本:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, " \"while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. " \"Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, " \"or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, " \"please don't share false information.\n<</SYS>>\n\n", user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
- ymcui/Chinese-Alpaca-2
| Model | Chinese-Alpaca-2 | Chinese-Alpaca-2-16K |
|---|---|---|
| 7B | ziqingyang/chinese-alpaca-2-7b | ziqingyang/chinese-alpaca-2-7b-16k |
| 13B | ziqingyang/chinese-alpaca-2-13b | ziqingyang/chinese-alpaca-2-13b-16k |
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n"user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
RUC-GSAI/YuLan-Chat
- Full
- YuLan-Chat-2-13B
- Delta (需要原始LLaMA)
- YuLan-Chat-1-65B-v2
- YuLan-Chat-1-65B-v1
- YuLan-Chat-1-13B-v1
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="The following is a conversation between a human and an AI assistant namely YuLan, developed by GSAI, Renmin University of China. " \"The AI assistant gives helpful, detailed, and polite answers to the user's questions.\n",user_role="[|Human|]:", bot_role="\n[|AI|]:", history_sep="\n", dtype=dtype)
WizardCoder
- WizardCoder-Python-7B-V1.0
- WizardCoder-Python-13B-V1.0
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="Below is an instruction that describes a task. " \"Write a response that appropriately completes the request.\n\n",user_role="### Instruction:\n", bot_role="\n\n### Response:", history_sep="\n", dtype=dtype)
Deepseek Coder
- Deepseek-Coder-1.3B-Instruct
- Deepseek-Coder-6.7B-Instruct
- Deepseek-Coder-7B-Instruct v1.5
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="<FLM_FIX_TOKEN_32013> You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, " \"and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, " \"and other non-computer science questions, you will refuse to answer.\n",user_role="### Instruction:\n", bot_role="\n### Response:\n", history_sep="\n<|EOT|>\n", dtype=dtype)
相关文章:
【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
1,关于 fastllm 项目 https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source4b290247452adda4e56d84b659b0c8a2 【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型 https://github.com/ztxz16/fastllm &am…...
《TCP/IP网络编程》中多线程HTTP服务器实现代码,线程池改编
文章目录 最初代码线程池代码locker.hthreadpool.htask.hmain.cppindex.html编译 执行结果 最初代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h>…...
Windows®、Linux® 和 UNIX® 系统都适用的远程桌面工具 OpenText ETX
Windows、Linux 和 UNIX 系统都适用的远程桌面工具 OpenText ETX 为 Windows、Linux 和 UNIX 实施精益、经济高效的虚拟化;提供完整的远程 Windows 可用性;以类似本地的性能远程工作;安全地保护系统和知识产权(IP)&am…...
酷柚易汛ERP - 榜店商城对接说明
榜店商城与酷柚易汛ERP对接,需要先在榜店系统中安装对应插件,配置对应的密钥 榜店商城与酷柚易汛ERP的商品进行关联操作,同时订单也会同步,关联不正确会导致订单出库错误 可查看对应的日志...
Linux 多进程开发(上)
第二章 Linux 多进程开发 2.1 进程概述2.2 进程状态转换2.3 进程创建2.4 exec 函数族2.5 进程控制 网络编程系列文章: 第1章 Linux系统编程入门(上) 第1章 Linux系统编程入门(下) 第2章 Linux多进程开发(…...
【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践
用免费GPU线上跑SD项目实践 DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我…...
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)
摘要:开发铁轨缺陷检测系统对于物流行业、制造业具有重要作用。本篇博客详细介绍了如何运用深度学习构建一个铁轨缺陷检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模…...
3.基础算法之搜索与图论
1.深度优先搜索 深度优先搜索(DFS,Depth First Search)是一种用于遍历或搜索树或图的算法。它将当前状态按照一定的规则顺序,先拓展一步得到一个新状态,再对这个新状态递归拓展下去。如果无法拓展,则退回…...
Java模板方法模式源码剖析及使用场景
一、原理与通俗理解 模板方法模式定义了一个算法的骨架,将某些步骤推迟到子类中实现。模板方法定义一个算法的骨架,将一些步骤的实现延迟到子类中完成。这样做的目的是确保算法的结构保持不变,同时又可以为不同的子类提供特定步骤的实现。 比如去餐馆吃饭,餐馆有固定的流程(下…...
c++ 新的函数声明语法
右值引用(&&) 右值引用(&&)允许我们定义接受临时对象或移动语义的函数。 void foo(int&& x); // 右值引用参数默认参数 允许在函数声明中指定参数的默认值。 void bar(int x, double y 3.14); // 带有默认参数的函数声明noexcept关键字 指示函数…...
一款好用的AI工具——边界AICHAT
目录 一、简介二、注册及登录三、主要功能介绍3.1、模型介绍3.2、对话模型历史记录3.3、创作中心3.4、AI绘画SD3.5、文生图3.6、图生图3.7、线稿生图3.8、艺术二维码3.9、秀图广场3.10、AI绘画创作人像辅助器 一、简介 人工智能(AI)是一门研究、开发用于…...
谷歌承认“窃取”OpenAI模型关键信息
什么?谷歌成功偷家OpenAI,还窃取到了gpt-3.5-turbo关键信息??? 是的,你没看错。 根据谷歌自己的说法,它不仅还原了OpenAI大模型的整个投影矩阵(projection matrix)&…...
蓝桥杯(3.10)
1219. 移动距离 import java.util.Scanner; public class Main{public static void main(String[] args) {Scanner sc new Scanner(System.in);int w sc.nextInt();int m sc.nextInt();int n sc.nextInt();m--;n--;//由从1开始变为从0开始//求行号int x1 m/w, x2 n/w;//…...
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中)
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中) 一、前言二、输入系统2.1 MRTK输入系统介绍2.2 输入数据提供者(Input Data Providers)2.3 输入动作(Input Actions)2…...
吴恩达深度学习笔记:深度学习引言1.1-1.5
目录 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)第一周:深度学习引言(Introduction to Deep Learning)1.1 欢迎(Welcome)1.2 什么是神经网络?(What is a Neural Network)1.3 神经网络的监督学习(Supervised Learning …...
【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记)
📖 前言:随着大数据时代的到来,大数据已经在金融、交通、物流等各个行业领域得到广泛应用。而Hadoop就是一个用于处理海量数据的框架,它既可以为海量数据提供可靠的存储;也可以为海量数据提供高效的处理。 目录 &#…...
蓝桥杯2023年第十四届省赛真题-工作时长
文件数据 把数据复制到excel中 数据按照增序排序 选中列数据,设置单元格格式,选择下述格式。注意,因为求和之后总小时数可能会超过24小时,所以不要选择最前面是hh的 设置B2 A2 - A1, B4 A4 - A3;然后选中已经算出…...
nginx禁止国外ip访问
1.安装geoip2扩展依赖 yum install libmaxminddb-devel -y 2.下载ngx_http_geoip2_module模块 https://github.com/leev/ngx_http_geoip2_module.git 3.编译安装 ./configure --add-module/datasdb/ngx_http_geoip2_module-3.4 4.下载最新数据库文件 模块安装成功后,还要…...
《腾讯音乐》24校招Java后端一面面经
1.手写LRU 2.项目拷打 3.Https客户端校验证书的细节? 4.对称加密和非对称加密的区别?你分别了解哪些算法? 5.在信息传输过程中,Https用的是对称加密还是非对称加密? 6.怎么防止下载的文件被劫持和篡改? 7.H…...
JavaScript:ES至今发展史简说
ECMAScript(简称ES)是JavaScript的标准,它的发展史经历了多个版本的迭代,以下是主要里程碑: ES1 (1997年6月):首个正式发布的ECMAScript标准,基于当时的JavaScript(由Netscape公司开…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
