【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
1,关于 fastllm 项目
https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source=4b290247452adda4e56d84b659b0c8a2
【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
https://github.com/ztxz16/fastllm
🚀 纯c++实现,便于跨平台移植,可以在安卓上直接编译
🚀 ARM平台支持NEON指令集加速,X86平台支持AVX指令集加速,NVIDIA平台支持CUDA加速,各个平台速度都很快就是了
🚀 支持浮点模型(FP32), 半精度模型(FP16), 量化模型(INT8, INT4) 加速
🚀 支持多卡部署,支持GPU + CPU混合部署
🚀 支持Batch速度优化
🚀 支持并发计算时动态拼Batch
🚀 支持流式输出,很方便实现打字机效果
🚀 支持python调用
🚀 前后端分离设计,便于支持新的计算设备
🚀 目前支持ChatGLM系列模型,各种LLAMA模型(ALPACA, VICUNA等),BAICHUAN模型,QWEN模型,MOSS模型,MINICPM模型等
2,本地CPU编译也非常方便
git clone https://github.com/ztxz16/fastllm.gitcd fastllm
mkdir build
cd build
cmake .. -DUSE_CUDA=OFF
make -j
3,运行webui 可以进行交互问答
文件下载:
https://hf-mirror.com/huangyuyang/chatglm2-6b-int4.flm
./webui -p /data/home/test/hf_cache/chatglm2-6b-int4.flm
Load (200 / 200)
Warmup…
finish.
please open http://127.0.0.1:8081

也有打字效果,不知道是咋实现的。好像不是stream 方式的。
3,速度还可以,同时也支持其他的模型
文档地址:
https://github.com/ztxz16/fastllm/blob/master/docs/llama_cookbook.md
LLaMA 类模型转换参考
这个文档提供了了转换LLaMA同结构模型的方法。
LLaMA类模型有着基本相同的结构,但权重和prompt构造有差异。在fastllm中,通过转转模型时修改部分配置,实现对这些变体模型的支持、
声明
以下配置方案根据模型的源代码整理,不保证模型推理结果与原版完全一致。
修改方式
目前,转换脚本和两行加速方式均可用于llama类模型。但无论采用哪一种方式,都需要预留足够的内存(可以用swap空间)。
在float16模式下,转换时约需要4×参数量+1GB的空闲内存。
转换脚本
这里以支持推理各类Llama结构的基座模型为例,介绍如何应用本文档。
- 方案一:修改转换脚本
以alpaca2flm.py为模板修改。在创建model之后添加:
model = LlamaForCausalLM.from_pretrained(model_name).float()# config.json中定义了自己的model_type的需要添加conf = model.config.__dict__conf["model_type"] = "llama"# 接下来的部分各个Chat模型有差别,Base模型有的需要添加pre_prompt。torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "", bot_role = "", history_sep = "", dtype = dtype)
其中,pre_prompt 、user_role 、bot_role 、history_sep分别为“开始的系统提示词(第一轮对话之前)”,“用户角色标志”,“用户话语结束标志及模型回复开始标志”,“两轮对话之间的分隔符”。
- 方案二:修改config.json
在下载的模型目录下,修改配置文件config.json中,修改"model_type"为llama,并增加下面的键-值对:
"pre_prompt": "","user_role": "","bot_role": "","history_sep": "",
如需添加Token ID而非字符串(类似baichuan-chat模型),可以使用“<FLM_FIX_TOKEN_{ID}>”的格式添加。
- 执行脚本
python3 tools/alpaca2flm.py [输出文件名] [精度] [原始模型名称或路径]
对齐tokenizer
如果想使fastllm模型和原版transformers模型基本一致,最主要的操作是对齐tokenizer。
如果模型使用了huggingface 加速版本的Tokenizers(即模型目录中包含tokenizer.json并优先使用),目前的转换脚本仅在从本地文件转换时,能够对齐tokenizer。
注意检查原始tokenizer的encode()方法返回的结果前面是否会加空格。如果原始tokenizer没有加空格,则需要设置:
conf["tokenizer_add_dummy_prefix"] = False
Base Model
一部分模型需要制定bos_token_id,假设bos_token_id为1则可以配置如下:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "", bot_role = "", history_sep = "", dtype = dtype)
Chat Model
对Chat Model,同样是修改转换脚本,或修改模型的config.json,以下是目前常见的chat model的配置:
InternLM(书生)
- internlm/internlm-chat-7b
- internlm/internlm-chat-7b v1.1
- internlm/internlm-chat-20b
conf = model.config.__dict__conf["model_type"] = "llama"torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<s><s>", user_role = "<|User|>:", bot_role = "<eoh>\n<|Bot|>:", history_sep = "<eoa>\n<s>", dtype = dtype)
可以直接使用llamalike2flm.py脚本转换:
cd build
python3 tools/llamalike2flm.py internlm-7b-fp16.flm float16 internlm/internlm-chat-20b #导出float16模型
python3 tools/llamalike2flm.py internlm-7b-int8.flm int8 internlm/internlm-chat-20b #导出int8模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm int4 internlm/internlm-chat-20b #导出int4模型
python3 tools/llamalike2flm.py internlm-7b-int4.flm float16 internlm/internlm-chat-7b #导出internlm-chat-7b float16模型
XVERSE
- xverse/XVERSE-13B-Chat
- xverse/XVERSE-7B-Chat
conf = model.config.__dict__conf["model_type"] = "llama"conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)
XVERSE-13B-Chat V1 版本需要对输入做NFKC规范化,fastllm暂不支持,因此需要使用原始tokenizer.
- xverse/XVERSE-13B-256K
该模型没有将RoPE外推参数放到config中,因此需要手工指定:
conf = model.config.__dict__conf["model_type"] = "llama"conf["rope_theta"] = 500000conf["rope_scaling.type"] = "dynamic"conf["rope_scaling.factor"] = 2.0conf["tokenizer_add_dummy_prefix"] = Falsetorch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "", user_role = "Human: ", bot_role = "\n\nAssistant: ", history_sep = "<FLM_FIX_TOKEN_3>", dtype = dtype)
其他 llama1 系列
- Vicuna v1.1 v1.3
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="A chat between a curious user and an artificial intelligence assistant. ""The assistant gives helpful, detailed, and polite answers to the user's questions. "user_role="USER: ", bot_role=" ASSISTANT:", history_sep="<s>", dtype=dtype)
- BiLLa
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "\n", user_role = "Human: ", bot_role = "\nAssistant: ", history_sep = "\n", dtype = dtype)
llama2-chat
- meta-llama/Llama-2-chat
| Model | Llama2-chat | Llama2-chat-hf |
|---|---|---|
| 7B | meta-llama/Llama-2-7b-chat | meta-llama/Llama-2-7b-chat-hf |
| 13B | meta-llama/Llama-2-13b-chat | meta-llama/Llama-2-13b-chat-hf |
| Model | CodeLlama-Instruct |
|---|---|
| 7B | codellama/CodeLlama-7b-Instruct-hf |
| 13B | codellama/CodeLlama-13b-Instruct-hf |
官方示例代码中,可以不用系统提示语:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>", user_role = "[INST] ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
Llama-2系列支持系统提示语需要修改代码,单轮可以使用以下带有系统提示语的版本:
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, " \"while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. " \"Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, " \"or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, " \"please don't share false information.\n<</SYS>>\n\n", user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
- ymcui/Chinese-Alpaca-2
| Model | Chinese-Alpaca-2 | Chinese-Alpaca-2-16K |
|---|---|---|
| 7B | ziqingyang/chinese-alpaca-2-7b | ziqingyang/chinese-alpaca-2-7b-16k |
| 13B | ziqingyang/chinese-alpaca-2-13b | ziqingyang/chinese-alpaca-2-13b-16k |
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt = "<FLM_FIX_TOKEN_1>[INST] <<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n"user_role = " ", bot_role = " [/INST]", history_sep = " <FLM_FIX_TOKEN_2><FLM_FIX_TOKEN_1>", dtype = dtype)
RUC-GSAI/YuLan-Chat
- Full
- YuLan-Chat-2-13B
- Delta (需要原始LLaMA)
- YuLan-Chat-1-65B-v2
- YuLan-Chat-1-65B-v1
- YuLan-Chat-1-13B-v1
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="The following is a conversation between a human and an AI assistant namely YuLan, developed by GSAI, Renmin University of China. " \"The AI assistant gives helpful, detailed, and polite answers to the user's questions.\n",user_role="[|Human|]:", bot_role="\n[|AI|]:", history_sep="\n", dtype=dtype)
WizardCoder
- WizardCoder-Python-7B-V1.0
- WizardCoder-Python-13B-V1.0
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="Below is an instruction that describes a task. " \"Write a response that appropriately completes the request.\n\n",user_role="### Instruction:\n", bot_role="\n\n### Response:", history_sep="\n", dtype=dtype)
Deepseek Coder
- Deepseek-Coder-1.3B-Instruct
- Deepseek-Coder-6.7B-Instruct
- Deepseek-Coder-7B-Instruct v1.5
torch2flm.tofile(exportPath, model, tokenizer, pre_prompt="<FLM_FIX_TOKEN_32013> You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, " \"and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, " \"and other non-computer science questions, you will refuse to answer.\n",user_role="### Instruction:\n", bot_role="\n### Response:\n", history_sep="\n<|EOT|>\n", dtype=dtype)
相关文章:
【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型
1,关于 fastllm 项目 https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source4b290247452adda4e56d84b659b0c8a2 【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型 https://github.com/ztxz16/fastllm &am…...
《TCP/IP网络编程》中多线程HTTP服务器实现代码,线程池改编
文章目录 最初代码线程池代码locker.hthreadpool.htask.hmain.cppindex.html编译 执行结果 最初代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h>…...
Windows®、Linux® 和 UNIX® 系统都适用的远程桌面工具 OpenText ETX
Windows、Linux 和 UNIX 系统都适用的远程桌面工具 OpenText ETX 为 Windows、Linux 和 UNIX 实施精益、经济高效的虚拟化;提供完整的远程 Windows 可用性;以类似本地的性能远程工作;安全地保护系统和知识产权(IP)&am…...
酷柚易汛ERP - 榜店商城对接说明
榜店商城与酷柚易汛ERP对接,需要先在榜店系统中安装对应插件,配置对应的密钥 榜店商城与酷柚易汛ERP的商品进行关联操作,同时订单也会同步,关联不正确会导致订单出库错误 可查看对应的日志...
Linux 多进程开发(上)
第二章 Linux 多进程开发 2.1 进程概述2.2 进程状态转换2.3 进程创建2.4 exec 函数族2.5 进程控制 网络编程系列文章: 第1章 Linux系统编程入门(上) 第1章 Linux系统编程入门(下) 第2章 Linux多进程开发(…...
【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践
用免费GPU线上跑SD项目实践 DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我…...
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)
摘要:开发铁轨缺陷检测系统对于物流行业、制造业具有重要作用。本篇博客详细介绍了如何运用深度学习构建一个铁轨缺陷检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模…...
3.基础算法之搜索与图论
1.深度优先搜索 深度优先搜索(DFS,Depth First Search)是一种用于遍历或搜索树或图的算法。它将当前状态按照一定的规则顺序,先拓展一步得到一个新状态,再对这个新状态递归拓展下去。如果无法拓展,则退回…...
Java模板方法模式源码剖析及使用场景
一、原理与通俗理解 模板方法模式定义了一个算法的骨架,将某些步骤推迟到子类中实现。模板方法定义一个算法的骨架,将一些步骤的实现延迟到子类中完成。这样做的目的是确保算法的结构保持不变,同时又可以为不同的子类提供特定步骤的实现。 比如去餐馆吃饭,餐馆有固定的流程(下…...
c++ 新的函数声明语法
右值引用(&&) 右值引用(&&)允许我们定义接受临时对象或移动语义的函数。 void foo(int&& x); // 右值引用参数默认参数 允许在函数声明中指定参数的默认值。 void bar(int x, double y 3.14); // 带有默认参数的函数声明noexcept关键字 指示函数…...
一款好用的AI工具——边界AICHAT
目录 一、简介二、注册及登录三、主要功能介绍3.1、模型介绍3.2、对话模型历史记录3.3、创作中心3.4、AI绘画SD3.5、文生图3.6、图生图3.7、线稿生图3.8、艺术二维码3.9、秀图广场3.10、AI绘画创作人像辅助器 一、简介 人工智能(AI)是一门研究、开发用于…...
谷歌承认“窃取”OpenAI模型关键信息
什么?谷歌成功偷家OpenAI,还窃取到了gpt-3.5-turbo关键信息??? 是的,你没看错。 根据谷歌自己的说法,它不仅还原了OpenAI大模型的整个投影矩阵(projection matrix)&…...
蓝桥杯(3.10)
1219. 移动距离 import java.util.Scanner; public class Main{public static void main(String[] args) {Scanner sc new Scanner(System.in);int w sc.nextInt();int m sc.nextInt();int n sc.nextInt();m--;n--;//由从1开始变为从0开始//求行号int x1 m/w, x2 n/w;//…...
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中)
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中) 一、前言二、输入系统2.1 MRTK输入系统介绍2.2 输入数据提供者(Input Data Providers)2.3 输入动作(Input Actions)2…...
吴恩达深度学习笔记:深度学习引言1.1-1.5
目录 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)第一周:深度学习引言(Introduction to Deep Learning)1.1 欢迎(Welcome)1.2 什么是神经网络?(What is a Neural Network)1.3 神经网络的监督学习(Supervised Learning …...
【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记)
📖 前言:随着大数据时代的到来,大数据已经在金融、交通、物流等各个行业领域得到广泛应用。而Hadoop就是一个用于处理海量数据的框架,它既可以为海量数据提供可靠的存储;也可以为海量数据提供高效的处理。 目录 &#…...
蓝桥杯2023年第十四届省赛真题-工作时长
文件数据 把数据复制到excel中 数据按照增序排序 选中列数据,设置单元格格式,选择下述格式。注意,因为求和之后总小时数可能会超过24小时,所以不要选择最前面是hh的 设置B2 A2 - A1, B4 A4 - A3;然后选中已经算出…...
nginx禁止国外ip访问
1.安装geoip2扩展依赖 yum install libmaxminddb-devel -y 2.下载ngx_http_geoip2_module模块 https://github.com/leev/ngx_http_geoip2_module.git 3.编译安装 ./configure --add-module/datasdb/ngx_http_geoip2_module-3.4 4.下载最新数据库文件 模块安装成功后,还要…...
《腾讯音乐》24校招Java后端一面面经
1.手写LRU 2.项目拷打 3.Https客户端校验证书的细节? 4.对称加密和非对称加密的区别?你分别了解哪些算法? 5.在信息传输过程中,Https用的是对称加密还是非对称加密? 6.怎么防止下载的文件被劫持和篡改? 7.H…...
JavaScript:ES至今发展史简说
ECMAScript(简称ES)是JavaScript的标准,它的发展史经历了多个版本的迭代,以下是主要里程碑: ES1 (1997年6月):首个正式发布的ECMAScript标准,基于当时的JavaScript(由Netscape公司开…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
嵌入式面试常问问题
以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...
