当前位置: 首页 > news >正文

腾讯面经学习笔记

💖 前言

👩‍🏫 参考地址

💖 操作系统

1. 进程和线程的区别

在这里插入图片描述

  • 本质区别
    • 进程是操作系统资源分配的基本单位
    • 线程是任务调度和执行的基本单位
  • 开销方面
    • 每个进程都有独立的代码和数据空间(程序上下文),程序之间的切换会有较大的开销;
    • 线程可以看作是轻量级的进程,同一类线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器(PC),线程之间切换的开销小
  • 稳定性方面
    • 进程中的子进程崩溃,并不会影响其他进程
    • 进程中某个线程崩了,整个进程可能也会崩掉
  • 内存分配方面
    • 系统在运行的时候会为每个进程分配不同的内存空间
    • 而对线程而言,除了CPU外,系统不会为线程分配内存(线程所使用的资源来自其所属进程的资源),线程组之间只能共享资源
  • 包含关系
    • 没有线程的进程可以看做是单线程的,如果一个进程内有多个线程,则执行过程不是一条线的,而是多条线(线程)共同完成的
    • 线程是进程的一部分,所以线程也被称为轻权进程或者轻量级进程

2. 为什么进程崩溃不会对其他进程产生很大影响?

  • 进程隔离性:每个进程都有自己独立的内存空间,当一个进程崩溃时,其内存空间会被操作系统回收,不会影响其他进程的内存空间。这种进程间的隔离性保证了一个进程崩溃不会直接影响其他进程的执行。
  • 进程独立性:每个进程都是独立运行的,它们之间不会共享资源,如文件、网络连接等。因此,一个进程的崩溃通常不会对其他进程的资源产生影响。

💖 数据结构

1. 排序算法 | 时间复杂度

在这里插入图片描述

  • 冒泡排序
    • 通过相邻元素的比较和交换,每次将最大(或最小)的元素逐步“冒泡”到最后(或最前)。
    • ⏰时间复杂度:最好情况下O( n n n),最坏情况下O( n 2 n^2 n2),平均情况下O( n 2 n^2 n2)
    • 🌎空间复杂度:O(1)
  • 插入排序
    • 将待排序元素逐个插入到已排序序列的合适位置,形成有序序列。
    • ⏰时间复杂度:最好情况下O( n n n),最坏情况下O( n 2 n^2 n2),平均情况下O( n 2 n^2 n2)
    • 🌎空间复杂度:
  • 选择排序
    • 通过不断选择未排序部分的最小(或最大)元素,并将其放置在已排序部分的末尾(或开头)。
    • ⏰时间复杂度:最好情况下O( n 2 n^2 n2),最坏情况下O( n 2 n^2 n2),平均情况下O( n 2 n^2 n2)
    • 🌎空间复杂度:O(1)
  • 快速排序
    • 通过选择一个基准元素,将数组划分为两个子数组,使得左子数组的元素都小于(或等于)基准元素,右子数组的元素都大于(或等于)基准元素,然后对子数组进行递归排序。
    • ⏰时间复杂度:最好情况下O( n l o g 2 n nlog_2n nlog2n),最坏情况下O( n 2 n^2 n2),平均情况下O( n l o g 2 n nlog_2n nlog2n)
    • 🌎空间复杂度:最好情况下O( l o g 2 n log_2n log2n),最坏情况下O( n n n)
  • 归并排序
    • 将数组不断分割为更小的子数组,然后将子数组进行合并,合并过程中进行排序
    • ⏰时间复杂度:O( n l o g 2 n nlog_2n nlog2n)
    • 🌎空间复杂度:O(n)
  • 堆排序
    • 通过将待排序元素构建成一个大根堆(或小根堆),然后将堆顶元素与末尾元素交换,再重新调整堆,重复该过程直到排序完成。
    • ⏰时间复杂度:O( n l o g 2 n nlog_2n nlog2n)
    • 🌎空间复杂度:O(1)

2. 归并排序和快速排序的使用场景

  • 归并是稳定排序,适合需要排序稳定的场景
  • 快速排序是不稳定排序,不适合需要排序稳定的场景。快速排序是目前基于比较内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短

3. 排序稳定是什么意思?

在这里插入图片描述

  • 排序稳定指的是在排序过程中,对于具有相同排序关键字的元素,在排序后它们的相对位置保持不变。
  • 换句话说,如果在排序前两个元素 A 和 B 的值相等,并且 A 在 B 的前面,那么在排序后 A 仍然在 B 的前面,这样的排序就是稳定排序。稳定排序保持了相同元素之间的顺序关系,适用于需要保持原始顺序的场景。

4. 稳定和不稳定排序算法有什么特点?

① 稳定

  • 相同元素的相对位置不会改变,排序后仍然保持原始顺序
  • 适用于需要保持元素间相对顺序关系的场景,如按照年龄排序后按姓名排序

② 不稳定

  • 相同元素的相对位置可能会改变,排序后不保证原始顺序
  • 可能会更快,但不适用于需要保持元素间相对顺序关系的场景

💖 MySQL

1. MySQL 的存储引擎有哪些?为什么常用InnoDB?

① MySQL 常用的存储引擎

  • InnoDB:

    • 支持事务,支持外键,支持崩溃修复和并发控制
    • 如果需要对事务的完整性要求比较高(比如银行),要求实现并发控制(比如秒杀抢购)
    • 如果需要频繁的更新、删除操作的数据库,也可以选择InnoDB,因为支持事务的提交(commit)和回滚(rollback)。
  • MyISAM:

    • 插入数据快,空间和内存使用比较低
    • 如果表主要是用于插入新记录和读出记录,那么选择MyISAM能实现处理高效率
  • MEMORY

    • 所有的数据都在内存中,数据的处理速度快,但是安全性不高
    • 如果需要很快的读写速度,对数据的安全性要求较低,可以选择MEMOEY
    • 它对表的大小有要求,不能建立太大的表。所以,这类数据库只使用在相对较小的数据库表
    • 如果只是临时存放数据,数据量不大,并且不需要较高的数据安全性,可以选择将数据保存在内存中的Memory引擎,MySQL中使用该引擎作为临时表,存放查询的中间结果

② InnoDB的优势

  • 支持事务
  • 最小锁的粒度是行级锁

2. B+ 树 和 B 树

B 树 和 B+ 树 都是通过多叉树的形式,将树的高度变矮,都非常适用于检索磁盘中的数据。

但是 MySQL 默认的存储引擎 InnoDB 采用的是 B+ 作为索引的数据结构,原因如下:

  • B+树非叶子节点不存放实际的记录数据,仅存放索引,因此在数据量相同的情况下,相比于非叶子节点既存索引又存记录的 B树,B+树的非叶子节点可以存放更多的索引,因此 B+树可以比 B树更加“矮胖”,查询底层节点的磁盘 IO次数会更少。
  • B+树又大量的冗余节点(所有非叶子节点都是冗余索引),这些索引让B+ 树在插入和删除的效率都更高,比如删除根节点时,不会像 B树那样发生复杂的树的调整变化
  • B+ 树叶子节点之间用链表连接了起来,有利于范围查询,而 B树 要实现范围查询,只能通过树的遍历来完成,这会涉及到多个节点的磁盘IO操作,效率较低

3. 除了聚簇索引,还有什么索引?

  • 二极索引(非聚簇索引)
  • 联合索引
  • 前缀索引
  • 唯一索引

4. 二级索引存放的有哪些数据?

  • 聚簇索引:叶子节点存放的是实际数据,所有完整的数据记录都存放在聚簇索引的叶子节点
  • 二级索引:叶子节点存放的是主键值,而不是实际数据

5. 索引失效的情况

  • 当我们使用或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx%这两种方式都会造成索引失效
  • 查询条件中对索引列使用了函数
  • 查询条件中对索引列使用了表达式计算
  • 数据类型转换:MySQL 在遇到字符串和数字比较的时候,会自动把字符串转为数字,然后再进行比较。如果字符串是索引列,而条件语句中的输入参数是数字的话,那么索引列会发生隐式类型转换,由于隐式类型转换是通过 CAST 函数实现的,等同于对索引列使用了函数,所以就会导致索引失效。
  • 联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。

6. 事务隔离级别有哪些?

四个隔离级别如下:

  • 读未提交:指一个事务还没提交时,它做的变更就能被其他事务看到
  • 读已提交:指一个事务提交之后,它做的变更才能被其他事务看到
  • 可重复读:指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化:会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行

按隔离级别高低排序如下:

7. 什么情况下会出现幻读?

一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一致的情况,就意味着发生了「幻读」现象。

在这里插入图片描述

8. 事务的 MVCC 是怎么实现的?

对于读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同

  • 读提交」隔离级别是在每个 select 都会生成一个新的 Read View,也意味着,事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务
  • 可重复读」隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View,这样就保证了在事务期间读到的数据都是事务启动前的记录

这两个隔离级别实现是通过「事务的 Read View 里的字段」和「记录中的两个隐藏列」的比对,来控制并发事务访问同一个记录时的行为,这就叫 MVCC(多版本并发控制)。


👩‍🏫 InnoDB行记录的三个隐藏字段
在这里插入图片描述

在这里插入图片描述
一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 前已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 后才启动的事务生成的,所以该版本的记录对当前事务不可见
  • 如果记录的 trx_id 值在 Read View 的 min_trx_id 和 max_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id 在 m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。

9. 事务之间怎么避免脏读的?

  • 要解决脏读现象,就要升级到**「读提交」以上的隔离级别**,这样事务只能读到其他事务已经提交完成的数据,而不会读到未提交事务的数据,就避免脏读的问题。
    在这里插入图片描述

💖 Redis

1. Redis数据类型

① 常见的五种类型

  • String(字符串)
  • Hash(哈希)
  • List(列表)
  • Set(集合)
  • Zset(有序集合)

在这里插入图片描述
随着 Redis 版本的更新,后面又支持了四种数据类型:BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)

② 五种基本数据类型的应用场景

  • String 类型的应用场景:缓存对象、常规计数、分布式锁、共享 session 信息等。
  • List 类型的应用场景:消息队列(但是有两个问题:1. 生产者需要自行实现全局唯一 ID;2. 不能以消费组形式消费数据)等。
  • Hash 类型:缓存对象、购物车等。
  • Set 类型:聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。
  • Zset 类型:排序场景,比如排行榜、电话和姓名排序等。

③ 新增的数据类型应用场景

  • BitMap(2.2 版新增):二值状态统计的场景,比如签到、判断用户登陆状态、连续签到用户总数等;
  • HyperLogLog(2.8 版新增):海量数据基数统计的场景,比如百万级网页 UV 计数等;
  • GEO(3.2 版新增):存储地理位置信息的场景,比如滴滴叫车;
  • Stream(5.0 版新增):消息队列,相比于基于 List 类型实现的消息队列,有这两个特有的特性**:自动生成全局唯一消息ID,支持以消费组形式消费数据。**

2. 热 key 是什么?怎么解决?

Redis 热key是指呗频繁访问的key,可能会导致单个key的访问量过大,影响系统性能。解决方案包括:

  • 使用二级缓存,即JVM本地缓存,减少Redis的读请求
  • 对热点key进行分片,将数据分散存储在不同的节点上,减轻单个key的压力
  • 开启内存淘汰机制,并选择使用LRU(least recently used,最近最少使用算法)算法来淘汰不常用的key,保证内存中存储的是最热门的数据。
  • 设置key的过期时间,确保key在一段时间后自动删除,防止长时间占用内存

3. String 是使用什么存储的?为什么不用 c 语言中的字符串?

Redis 的 String 字符串是用 SDS 数据结构存储的

在这里插入图片描述

  • len:记录了字符串的长度。这样获取字符串长度的时候,只需要返回这个成员变量值就行,时间复杂度只需要 O(1)。
  • alloc:分配给字符数组的空间长度。这样在修改字符串的时候,可以通过 alloc - len 计算出剩余的空间大小,可以用来判断空间是否满足修改需求,如果不满足的话,就会自动将 SDS 的空间扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用 SDS 既不需要手动修改 SDS 的空间大小,也不会出现前面所说的缓冲区溢出的问题。
  • flags:用来表示不同类型的SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64,后面在说明区别之处。
  • buf[]:字符数组,用来保存实际数据。不仅可以保存字符串,也可以保存二进制数据。

总的来说,Redis 的 SDS 结构在原本字符数组之上,增加了三个元数据:len、alloc、flags,用来解决 C 语言字符串的缺陷。

优点如下:

  • O(1)复杂度获取字符串

    • C 语言的字符串长度获取 strlen 函数,需要通过遍历的方式来统计字符串长度,时间复杂度是 O(N)。
    • 而 Redis 的 SDS 结构因为加入了 len 成员变量,那么获取字符串长度的时候,直接返回这个成员变量的值就行,所以复杂度只有O(1)
  • 二进制安全

    • 因为 SDS 不需要用 “\0” 字符来标识字符串结尾了,而是有个专门的 len 成员变量来记录长度,所以可存储包含 “\0” 的数据。但是 SDS 为了兼容部分 C 语言标准库的函数, SDS 字符串结尾还是会加上 “\0” 字符。

    • 因此, SDS 的 API 都是以处理二进制的方式来处理 SDS 存放在 buf[] 里的数据,程序不会对其中的数据做任何限制,数据写入的时候时什么样的,它被读取时就是什么样的。

    • 通过使用二进制安全的 SDS,而不是 C 字符串,使得 Redis 不仅可以保存文本数据,也可以保存任意格式的二进制数据

  • 不会发生缓冲区溢出

    • C 语言的字符串标准库提供的字符串操作函数,大多数(比如 strcat 追加字符串函数)都是不安全的,因为这些函数把缓冲区大小是否满足操作需求的工作交由开发者来保证,程序内部并不会判断缓冲区大小是否足够用,当发生了缓冲区溢出就有可能造成程序异常结束。
    • 所以,Redis 的 SDS 结构里引入了 a l l o c 和 l e n alloc 和 len alloclen 成员变量,这样 SDS API 通过 a l l o c − l e n alloc - len alloclen 计算出剩余可用的空间大小,这样在对字符串做修改操作的时候,就可以由程序内部判断缓冲区大小是否足够用。
    • 而且,当判断出缓冲区大小不够用时,Redis 会自动将扩大 SDS 的空间大小,以满足修改所需的大小。

💖 Java

1. 编译型语言和解释型语言的区别?

  • 编译型语言:在程序执行之前,整个源代码会被编译成机器码或者字节码,生成可执行文件。执行时直接运行编译后的代码,速度快,但跨平台性较差

  • 解释型语言:在程序执行时,逐行解释执行源代码,不生成独立的可执行文件。通常由解释器动态解释并执行代码,跨平台性好,但执行速度相对较慢

  • 典型的编译型语言如 C、C++,典型的解释型语言如Python、JavaScript

2. 动态数组的实现有哪些?

ArrayList和Vector都支持动态扩容,都属于动态数组。

3. ArrayList 和 Vector 的比较

  • 线程安全性
    • Vector 是线程安全的
    • ArrayList 不是线程安全的
  • 扩容策略
    • Vector是扩展1倍
    • ArrayList在底层数组不够用时在原来的基础上扩展0.5倍

4. HashMap 的扩容条件是什么?

Java7 的 HashMap 扩容必须满足两个条件:

  • 当前存储的元素个数大小必须 大于等于阈值
  • 当前加入的数据是否发生了 hash 冲突

Java8 中扩容只需要满足一个条件:

  • 当前存放新值的时候已有元素的个数大于等于阈值

相关文章:

腾讯面经学习笔记

💖 前言 👩‍🏫 参考地址 💖 操作系统 1. 进程和线程的区别 本质区别 进程是操作系统资源分配的基本单位线程是任务调度和执行的基本单位 开销方面 每个进程都有独立的代码和数据空间(程序上下文)&#…...

北京某中厂凉经

3月12号 大二想着找一份暑假面试,然后就海投。北京某上市公司给了面试,这也是我的第一个面试,听面试官最后的话大概是挂了。 大概回忆一下当时面试的部分内容吧,虽然已经过去一两小时的,而且我属于那种一面完就忘的差…...

离线数仓(五)【数据仓库建模】

前言 今天开始正式数据仓库的内容了, 前面我们把生产数据 , 数据上传到 HDFS , Kafka 的通道都已经搭建完毕了, 数据也就正式进入数据仓库了, 解下来的数仓建模是重中之重 , 是将来吃饭的家伙 ! 以及 Hive SQL 必须熟练到像喝水一样 ! 第1章 数据仓库概述 1.1 数据仓库概念 数…...

python | 类与对象

在 Python 中,我们用关键字 class 来定义类: class Player:pass Player 类中只有一条语句 pass,这是 Python 中的特殊语句,没有实际含义。 Python 在执行到它时也什么都不会做。不过它能够保证结构的完整性。例如,我…...

基于Qt 和python 的自动升级功能

需求: 公司内部的一个客户端工具,想加上一个自动升级功能。 服务端: 1,服务端使用python3.7 ,搭配 fastapi 和uvicorn 写一个简单的服务,开出一个get接口,用于客户端读取安装包的版本&#…...

【论文阅读】IEEE Access 2019 BadNets:评估深度神经网络的后门攻击

文章目录 一.论文信息二.论文内容1.摘要2.引言3.主要图表4.结论 一.论文信息 论文题目: BadNets: Evaluating Backdooring Attacks on Deep Neural Networks(BadNets:评估深度神经网络的后门攻击) 论文来源: 2019-IEEE Access …...

Unity 让角色动起来(动画控制器)

下载素材: 导入后,找到预制体和动画。 新建动画控制器,拖动到预制体的新版动画组件上。 建立动画关系 创建脚本,挂载到预制体上。 using System.Collections; using System.Collections.Generic; using UnityEngine;public c…...

ubuntu22.04环境中安装pylint

ubuntu22.04环境中安装pylint sudo apt-get install python3-pipsudo aptitude install python3-pipsudo pip install pylint sudo apt-get install python3-pip 在安装pylint的时候,需要使用pip命令,在ubuntu22.04环境中命令如下: $ sudo …...

主流数据库的区别

几个主流的数据库有: 1. MySQL:MySQL是一种关系型数据库管理系统,常用于Web应用程序开发和数据存储。 2. Oracle:Oracle是一种关系型数据库管理系统,由Oracle Corporation开发和销售。它广泛用于企业级应用程序中。 …...

veeam备份基础

veeam的安装 将文件动态连接文件复制到veeam的安装目录中,替换掉新的文件 重新启动服务 为veeam添加证书 为veeam添加存储 其他 第一次完整备份时间会比较久 备份预览,transferred和processing date的区别 transferred后面数据为压缩比...

Flink并行度

1、Task flink中每个算子就是一个Task,比如flatMap、map、sum是一个Task。 2、SubTask 算子有几个并行度SubTask的数量就是几,比如 3、算子并行度 算子并行度指的是每个算子的并行度,可用env.setParallelism(1);设置所有算子的并行度&am…...

这届留学生是懂作弊的,ChatGPT震惊教授一整年!

ChatGPT,一款全新聊天机器人模型,成为北美科技圈的新时髦。 图片来源:New York Post 有人和它“探讨”人生,畅聊哲学,但也有人起了歪心思,用它进行学术作弊。这类新型学术不端事件引发人们关于教育的再思考…...

CVE-2023-38836 BoidCMSv.2.0.0 后台文件上传漏洞

漏洞简介 BoidCMS是一个免费的开源平面文件 CMS,用于构建简单的网站和博客,使用 PHP 开发并使用 JSON 作为数据库。它的安装无需配置或安装任何关系数据库(如 MySQL)。您只需要一个支持PHP 的Web服务器。在 BoidCMS v.2.0.0 中存…...

pf4j插件实践验证

Java系统实现插件机制,可自行通过classloader实现,亦可使用成熟的框架。pf4j是一款轻量级,扩展性强的插件,可实现插件的开发管理(插件开发、加载、卸载、更新),省略了一些基础代码的开发&#x…...

计算机组成原理之运算方法和运算器

文章目录 数据格式定点数浮点数 机器码表示原码反码补码数的补码与真值 移码IEEE754标准 数据格式 定点数 定点数就是数据的小数点的位置是固定不变的,通常将数据表示成纯小数或纯整数以 n 1 n1 n1 位数表示定点数,以 X n Xn Xn表示定点数的正负&#…...

Redux Toolkit

本文作者为 360 奇舞团前端开发工程师 阅读本文章前,需要先了解下 redux 的基本概念与用法,Redux Toolkit 是建立在 Redux 基础之上的工具包,因此需要对 Redux 的基本概念有一定的了解,包括 Action、Reducer、Store、Middleware 等…...

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的商品识别系统(深度学习+UI界面+训练数据集+Python代码)

摘要:在零售行业的技术进步中,开发商品识别系统扮演着关键角色。本博文详细阐述了如何利用深度学习技术搭建一个高效的商品识别系统,并分享了一套完整的代码实现。系统采用了性能强劲的YOLOv8算法,同时对YOLOv7、YOLOv6、YOLOv5等…...

在亚马逊云EC2上启动PopOS

CloudEndure遇到的挑战 自从使用CloudEndure导入win11后就一发不可收拾,然后就可以尝试新的操作系统,比如system76的Pop!_OS,虽然上是基于ubuntu进行开发的,但是在使用安装CloudEndure 的时候还是遇到的了问题,可能是因为内核很新,也可能其他的一些原因. 如果说严格按照兼容性…...

Linux运维:磁盘分区与挂载详解

Linux运维:磁盘分区与挂载详解 1、磁盘分区的原理2、查看系统中所有的磁盘设备及其分区信息3、进行磁盘分区(对于sdb新磁盘)4、格式化分区5、挂载分区(临时挂载、永久挂载)6、取消挂载分区7、删除分区 💖Th…...

jeecg 项目 springcloud 项目有一个模块 没加载进来 只需要 把这个模块放到 可以加载到模块的位置 刷新依赖

springcloud 项目有一个模块 没加载进来 只需要 把这个模块放到 可以加载到模块的位置 刷新依赖...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...