当前位置: 首页 > news >正文

人员摔倒识别预警系统 人员跌倒检测算法 yolov7

人员摔倒识别预警系统 人员跌倒检测算法基于yolov7网络模型计算机识别技术,人员摔倒识别预警系统 人员跌倒检测算法对画面中人员摔倒进行实时检测识别抓拍告警。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器
并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

相关文章:

人员摔倒识别预警系统 人员跌倒检测算法 yolov7

人员摔倒识别预警系统 人员跌倒检测算法基于yolov7网络模型计算机识别技术,人员摔倒识别预警系统 人员跌倒检测算法对画面中人员摔倒进行实时检测识别抓拍告警。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和…...

Spring-Cloud-Gateway集成Nacos如何做负载均衡?

spring-cloud-alibaba的低版本 如果所用的SpringCloud和Nacos的版本信息如下&#xff1a; <spring-cloud.version>Hoxton.SR10</spring-cloud.version> <spring-cloud-alibaba.version>2.2.6.RELEASE</spring-cloud-alibaba.version>网关的依赖如下&…...

【数据挖掘与商务智能决策】第四章 逻辑回归模型

逻辑回归模型算法原理 逻辑回归模型的数学原理 %matplotlib inline# 补充知识点:Sigmoid函数绘制 import matplotlib.pyplot as plt import numpy as npx = np.linspace(-6, 6) # 通过linspace()函数生成-6到6的等差数列,默认50个数 y = 1.0...

滚动升级回滚

滚动升级回滚 ReplicationController 资源文件 apiVersion: v1 kind: ReplicationController metadata:name: kubia-v1labels:app: kubia spec:replicas: 3template:metadata:name: kubialabels:app: kubiaspec:containers:- image: luksa/kubia:v1name: nodejes --- apiVer…...

2023/3/6 VUE - 组件传值【通信】方式

1 父亲传子代传值【子代使用父代的数据】 1.1 props传值 父亲给儿子传值&#xff1a; 爷爷给孙子传值&#xff1a; 这个props传值的方式&#xff0c;只能一代一代的往下传&#xff0c;不能跨代传值。 有一个问题&#xff1a;子组件不能修改父组件的值&#xff1a; 1.2 …...

MedCalc v20.217 医学ROC曲线统计分析参考软件

MedCalc是一款医学 ROC 曲线统计软件,用于ROC曲线分析的参考软件,医学工作者设计的医学计算器,功能齐全。它可以帮助医生快速作出普通的医学计算,从而对症下药。提供超过76种常用的规则和方法,包括:病人数据、单位参数、费用计算等等。甚至可以将图形另存为BMP,PNG,GIF…...

欢乐消除开心假日协议解密

欢乐消除开心假日协议解密协/议/流/量/解/密分析欢乐消除开心假日这款游戏流量的协议加密方式。序欢乐消除开心假日是一款合成模拟家装的游戏&#xff0c;在这个游戏中&#xff0c;你将成为一位充满热情的设计师&#xff0c;与好友一起经营工作室。你需要根据客户的需求重新设计…...

Android Service知识

一. 概览 Service 是一种可在后台执行长时间运行操作而不提供界面的应用组件。服务可由其他应用组件启动&#xff0c;而且即使用户切换到其他应用&#xff0c;服务仍将在后台继续运行。此外&#xff0c;组件可通过绑定到服务与之进行交互&#xff0c;甚至是执行进程间通信 (IPC…...

axios的get请求传入数组参数后端无法接收的问题

问题描述 在做项目时&#xff0c;需要把前端的数组通过axios的get请求发送到后端处理&#xff0c;于是像这样直接发送&#xff1a; axios.get(url,{params:{arr: update_arr}})这时在后端接收后报错说&#xff1a;没有 ‘arr’ 这个key&#xff1a; arr request.GET[arr] pr…...

奖金发放-课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)

实例2&#xff1a;奖金发放 某企业发放的奖金是根据利润和提成计算的&#xff0c;其规则如表1所示。 表1 奖金发放规则 利润&#xff08;万元&#xff09; 奖金提成&#xff08;%&#xff09; I≤10 10% 10&#xff1c;I≤20 7.5% 20&#xff1c;I≤20 5% 10&#xf…...

第十四届蓝桥杯第三期模拟赛 【python】

第十四届蓝桥杯第三期模拟赛 【python】 文章目录第十四届蓝桥杯第三期模拟赛 【python】✨最小的十六进制&#xff08;python的16进制&#xff09;❓️问题描述答案提交&#x1f9e0;思路&#x1f5a5;︎参考答案✨Excel的列&#xff08;进制转化&#xff09;❓️问题描述答案…...

Python——函数(重点内容)

函数 函数是组织好的&#xff0c;可重复使用的&#xff0c;用来实现单一&#xff0c;或相关联功能的代码段。 函数能提高应用的模块性&#xff0c;和代码的重复利用率。你已经知道Python提供了许多内建函数&#xff0c;比如print()。但你也可以自己创建函数&#xff0c;这被叫…...

2023年如何在Google做外贸

2023年如何在Google做外贸 答案是&#xff1a;利用谷歌SEO获取自然流量促进成交。 随着全球化和数字化的发展&#xff0c;外贸行业越来越重视互联网的渠道拓展。 在Google搜索引擎上做好SEO优化&#xff0c;是吸引国际客户和提高品牌知名度的关键。 本文将探讨2023年如何在…...

Linux操作系统学习(线程池)

文章目录线程池线程池原理代码示例单例模式饿汉模式懒汉模式饿汉懒汉对比其他的锁线程池 线程池原理 ​ 线程池是一种线程使用模式。在多线程应用中&#xff0c;若每有一个任务&#xff0c;线程就去调度相应的函数去创建&#xff0c;当任务过多时&#xff0c;每次都去调度且每…...

JVM运行时数据区—Java虚拟机栈

虚拟机栈的背景 由于跨平台性的设计&#xff0c;java的指令都是根据栈来设计的。不同平台CPU架构不同&#xff0c;所以不能设计为基于寄存器的。 根据栈设计的优点是跨平台&#xff0c;指令集小&#xff0c;编译器容易实现&#xff0c;缺点是性能下降&#xff0c;实现同样的功…...

gitlab中文社区

1、获取gitlab中文社区项目 中文社区版项目&#xff1a;https://gitlab.com/xhang/gitlab 2、克隆中文仓库 git clone https://gitlab.com/xhang/gitlab.git 3、查看gitlab版本 diff 获取对应版本的中文 head -1 /opt/gitlab/version-manifest.txt #安装的是gitlab-ce…...

深度学习-第T2周——彩色图片分类

深度学习-第T2周——彩色图片分类深度学习-第P1周——实现mnist手写数字识别一、前言二、我的环境三、前期工作1、导入依赖项并设置GPU2、导入数据集3、归一化4、可视化图片四、构建简单的CNN网络五、编译并训练模型1、设置超参数2、编写训练函数六、预测七、模型评估深度学习-…...

GNU C编译器扩展关键字:__attribute__

目录 一、section 二、aligned 三、packed 四、format 五、weak 六、alias 七、noinline和always_inline GNU C增加了一个__attribute__关键字用来声明一个函数、变量或类型的特殊属性&#xff0c;可以知道编译器在编译过程中进行特定方面的优化或代码检查。 目前&…...

C++基础 | 从C到C++快速过渡

一、开发环境 c使用的编译器是g。 vim或者vscodeclionVS 二、C版本的Hello World /*** brief c版本helloworld示例* author Mculover666* date 2023/2/26*/#include <iostream> using namespace std;int main() {int a 1;double b 3.14;char c[] "str…...

【C++】仿函数 -- priority_queue

文章目录一、priority_queue 的介绍和使用1、priority_queue 的介绍2、priority_queue 的使用3、priority_queue 相关 OJ 题二、仿函数1、什么是仿函数2、仿函数的作用三、priority_queue 的模拟实现一、priority_queue 的介绍和使用 1、priority_queue 的介绍 priority_queu…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...