当前位置: 首页 > news >正文

爬虫入门到精通_框架篇16(Scrapy框架基本使用)_名人名言的抓取

1 目标站点分析

抓取网站:http://quotes.toscrape.com/
主要显示了一些名人名言,以及作者、标签等等信息:
在这里插入图片描述
点击next,page变为2:
在这里插入图片描述

2 流程框架

  1. 抓取第一页:请求第一页的URL并得到源代码,进行下一步分析。
  2. 获取内容和下一页链接:分析源代码,提取首页内容,获取下一页链接等待进一步爬取。
  3. 翻页爬取:请求下一页信息,分析内容并请求再下一页链接。
  4. 保存爬取内容:将爬取结果保存为特定格式如文本,数据库。

3 代码实战

新建一个项目

scrapy startproject quotetutorial

在这里插入图片描述
创建一个spider(名为quotes):
在这里插入图片描述
使用pycharm来打开已经在本地生成的项目:
在这里插入图片描述
scrapy.cfg:配置文件
items.py:保存数据的数据结构
middlewares.py:爬取过程中定义的一些中间件,可以用来处理Request,Response以及Exceptions等操作,也可以用来修改Request, Response等相关的配置
pipelines.py:项目管道,可以用来输出一些items
settings.py:定义了许多配置信息
quotes.py:主要的运行代码

执行这个爬虫程序:
在这里插入图片描述
可以看到控制台中打印出了许多调试信息,可以看出,它和普通的爬虫不太一样,Scrapy提供了很多额外的输出。

抓取第一页

在这里插入图片描述
1.更改QuotesSpider这个类,通过css选中quote这个区块,
在这里插入图片描述

    def parse(self, response):quotes = response.css('.quote')for quote in quotes:text = quote.css('.text::text').extract_first()author = quote.css('.author::text').extract_first()tags = quote.css('.tags . tag::text').extract()

这样的解析方法和pyquery非常相似:
.text :指的是标签的class.
::text :是Scrapy特有的语法结构,表示输出标签里面的文本内容.
extract_first() :方法表示获取第一个内容.
extract :会把所有结果都找出来(类似于find和findall).

说明:Scrapy还为我们提供了一个非常强大的工具–shell,在命令行中输入“scrapy shell quotes.toscrape.com”,可以进入命令行交互模式:
例如,直接输入response,回车后会直接执行这条语句。:
在这里插入图片描述
试试刚才写的方法的效果:先查看“response.css(’.quote’)”的输出:
在这里插入图片描述
这是一个list类型的数据,里面的内容是Selector选择器,查看第一个结果:此时若直接输入quotes会报错。
先执行quotes = response.css(‘.quote’),然后quotes[0]。
在这里插入图片描述
.text和.text::text的区别:data数据的输出和不输出
在这里插入图片描述
2.借助Scrapy提供的“items.py”定义统一的数据结构,指定一些字段之类的,将爬取到的结果作为一个个整体存下来。根据提示更改文件如下:
在这里插入图片描述
3. 要在parse方法中调用我们刚才定义的items,将提取出的网页信息存储到item,然后调用yield方法将item生成出来。
在这里插入图片描述

获取内容和下一页链接

在这里插入图片描述

import scrapy
from quotetutorial.items import QuotetutorialItemclass QuotesSpider(scrapy.Spider):name = "quotes"allowed_domains = ["quotes.toscrape.com"]start_urls = ["https://quotes.toscrape.com"]def parse(self, response):quotes = response.css('.quote')for quote in quotes:item = QuotetutorialItem()text = quote.css('.text::text').extract_first()author = quote.css('.author::text').extract_first()tags = quote.css('.tags .tag::text').extract()item['text'] = textitem['author'] = authoritem['tags'] = tagsyield itemnext = response.css('.pager .next a::attr(href)').extract_first()url = response.urljoin(next)yield scrapy.Request(url=url, callback=self.parse)

最后调用Request,第一个参数就是要请求的url,第二个参数“callback”是回调函数的意思,也就是请求之后得到的response由谁来处理,这里我们还是调用parse,因为parse方法就是用来处理索引页的,这就相当于完成了一个递归的调用,可以一直不断地调用parse方法获取下一页的链接并对访问得到的信息进行处理。

再次重新运行程序,可以看到输出了10页的内容,这是因为该网站只有10页内容:
在这里插入图片描述

保存爬取到的信息

在原来的命令后面增加“-o 文件名称.json”,爬取完成后就会生成一个“quotes.json”文件,把获取到的信息保存成了标准的json格式。

scrapy crawl quotes -o quotes.json

在这里插入图片描述
Scrapy还提供了其它存储格式,比如“jl”格式,在命令行输入如下命令就可以得到jl格式文件。相比于json格式,它没有了最前面和最后面的的大括号,每条数据独占一行:

scrapy crawl quotes -o quotes.jl

或者保存成csv格式:

scrapy crawl quotes -o quotes.csv

它还支持xml、pickle和marshal等格式。
Scrapy还提供了一种远程ftp的保存方式,可以将爬取结果通过ftp的形式进行保存,例如:

scrapy crawl quotes -o ftp://user:pass@ftp.example.com/path/quotes.csv

数据处理

在将爬取到的内容进行保存之前,还需要对item进行相应的处理,因为在解析完之后,有一些item可能不是我们想要的,或者我们想把item保存到数据库里面,就需要借助Scrapy的Pipeline工具。
更改pipelines.py文件:

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem
import pymongoclass TextPipeline:def __init__(self):self.limit = 50def process_item(self, item, spider):if item['text']:if len(item['text']) > self.limit:item['text'] = item['text'][0:self.limit].rstrip() + '...'return itemelse:return DropItem('Missing Text')class MongoPipeline(object):def __init__(self, mongo_uri, mongo_db):self.mongo_uri = mongo_uriself.mongo_db = mongo_db@classmethoddef from_crawler(cls, crawler):return cls(mongo_uri=crawler.settings.get('MONGO_URI'),mongo_db=crawler.settings.get('MONGO_DB'))def open_spider(self, spider):self.client = pymongo.MongoClient(self.mongo_uri)self.db = self.client[self.mongo_db]def process_item(self, item, spider):name = item.__class__.__name__self.db['quotes'].insert(dict(item))return itemdef close_spider(self, spider):self.client.close()

更改setting:

MONGO_URI = 'localhost'
MONGO_DB = 'quotestutorial'

在这里插入图片描述

pipeline似乎没生效,要想让pipeline生效,需要在settings里面指定pipeline。
后面的序号300和400这样,代表pipeline运行的优先级顺序,序号越小表示优先级越高,会优先进行调用。

MONGO_URI = 'localhost'
MONGO_DB = 'quotestutorial'ITEM_PIPELINES = {'quotetutorial.pipelines.TextPipeline': 300,'quotetutorial.pipelines.MongoPipeline': 400,
}

将程序写好后我们可以再次运行,(命令行输入“scrapy crawl quotes”),可以看到输出的text过长的话,后面就被省略号代替了,同时数据也被存入了MongoDB数据库。

相关文章:

爬虫入门到精通_框架篇16(Scrapy框架基本使用)_名人名言的抓取

1 目标站点分析 抓取网站:http://quotes.toscrape.com/ 主要显示了一些名人名言,以及作者、标签等等信息: 点击next,page变为2: 2 流程框架 抓取第一页:请求第一页的URL并得到源代码,进行下…...

mac inter 芯片遇到程序无法打开(无法验证开发者)

mac inter 芯片遇到程序无法打开(无法验证开发者) 解决方案 终端运行命令: sudo xattr -r -d com.apple.quarantine 文件路径(直接把文件拖入到终端,可以自动找到文件路径)即可令其获得权限 补充知识: 通过gpt可以…...

科技成果鉴定测试如何进行?第三方检测机构进行鉴定测试的好处

科技成果鉴定测试,作为科技领域中一项重要的质量检验手段,具有广泛的应用范围。旨在为科技成果的研发者和使用者提供客观、科学、权威的鉴定结果,从而评估科技成果的技术水平和市场竞争力。   科技成果鉴定测试是对科技成果进行系统、全面的…...

八、词嵌入语言模型(Word Embedding)

词嵌入(Word Embedding, WE),任务是把不可计算、非结构化的词转换为可以计算、结构化的向量,从而便于进行数学处理。 一个更官方一点的定义是:词嵌入是是指把一个维数为所有词的数量的高维空间(one-hot形式…...

重学SpringBoot3-WebMvcConfigurer接口

摘要: 本文详细介绍了SpringBoot 3中的WebMvcConfigurer接口,旨在帮助读者深入理解其原理和实现,从而能够更好地使用SpringBoot进行Web开发。阅读本文需要大约30分钟。 关键词:SpringBoot, WebMvcConfigurer, SpringMVC, Web开发…...

《深入理解springCloud与微服务》笔记

第一章 微服务介绍 1.3 微服务的不足 1.3.2 分布式事务 CAP 理论,即同时满足“一致性”“可用性”和“分区容错”是 件不可能的事。 Consistency :指数据的强一致性。如果写入某个数据成功,之后读取,读到的都是新写入的数据&a…...

Vivado原语模板

1.原语的概念 原语是一种元件! FPGA原语是芯片制造商已经定义好的基本电路元件,是一系列组成逻辑电路的基本单元,FPGA开发者编写逻辑代码时可以调用原语进行底层构建。 2.原语的分类 原语可分为预定义原语和用户自定义原语。预定义原语为如and/or等门级原语不需要例化,可以…...

【linux本地安装tinycudann包教程】

【linux本地安装tinycudann包教程】 tiny-cuda-nn官网链接 如果你是windows 10系统的,想要安装tiny-cuda-nn可以参考我的文章——windows 10安装tiny-cuda-n包 根据官网要求:C++要求对应14,其实这样就已经告诉我们linux系统中的gcc版本不能高于9,同时下面又告诉我们gcc版…...

使用Nginx进行负载均衡

什么是负载均衡 Nginx是一个高性能的开源反向代理服务器,也可以用作负载均衡器。通过Nginx的负载均衡功能,可以将流量分发到多台后端服务器上,实现负载均衡,提高系统的性能、可用性和稳定性。 如下图所示: Nginx负…...

什么护眼台灯效果好?热门护眼台灯全方位测评推荐

台灯可以说是佳佳必备,尤其是家中有正在上学的孩子的更是需要一款好的台灯,不管是看书、写字都离不开台灯。不过很多家长在挑选台灯时往往仅关注到光线亮度是否充足,而忽略掉光线均匀度、舒适度等等方面的问题。所以选择一款优质的护眼台灯是…...

云上三问,迈向智能时代的关键

在今天的中国,第一热词是什么?面对这个问题,“新质生产力”当仁不让,而智能化技术毫无疑问是“新质生产力”最重要的来源之一。 在这样的大势下,大型政企是向新技术要“新质生产力”的时代先锋。云服务,则是…...

【网络安全】手机不幸被远程监控,该如何破解,如何预防?

手机如果不幸被远程监控了,用三招就可以轻松破解,再用三招可以防范于未然。 三招可破解可解除手机被远程监控 1、恢复出厂设置 这一招是手机解决软件故障和系统故障的终极大招。只要点了恢复出厂设置,你手机里后装的各种APP全部将灰飞烟灭…...

每日OJ题_哈希表④_力扣219. 存在重复元素 II

目录 力扣219. 存在重复元素 II 解析代码 力扣219. 存在重复元素 II 219. 存在重复元素 II 难度 简单 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&am…...

42.坑王驾到第八期:uniCloud报错

uniCloud 报错 今天调用云函数来调试小程序的时候突然暴了一个奇葩错误&#xff0c;require(…).main is not a function。翻官方文档后发现&#xff0c;原来是这样&#xff1a;**如果你写的是云对象&#xff0c;入口文件应为 index.obj.js&#xff0c;如果你写的是云函数入口…...

Linux常用操作命令

Linux常用操作命令 1.文件管理catfile 2.文档编辑3.文件传输4.磁盘管理5.磁盘维护6.网络通讯7.系统管理8.系统设置9.备份压缩10.设备管理 Linux 英文解释为 Linux is not Unix。 Linux内核最初只是由芬兰人李纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;在赫尔辛基大学上…...

OpenCV的常用数据类型

OpenCV涉及的常用数据类型除包含C的基本数据类型,如&#xff1a;char、uchar&#xff0c;int、unsigned int,short 、long、float、double等数据类型外, 还包含Vec&#xff0c;Point、Scalar、Size、Rect、RotatedRect、Mat等类。C中的基本数据类型不需再做说明下面重点介绍一下…...

STM32串口通信—串口的接收和发送详解

目录 前言&#xff1a; STM32串口通信基础知识&#xff1a; 1&#xff0c;STM32里的串口通信 2&#xff0c;串口的发送和接收 串口发送&#xff1a; 串口接收&#xff1a; 串口在STM32中的配置&#xff1a; 1. RCC开启USART、串口TX/RX所对应的GPIO口 2. 初始化GPIO口 …...

《汇编语言》第3版 (王爽) 第14章

第14章 端口 检测点14.1 &#xff08;1&#xff09;.编程&#xff0c;读取CMOS RAM的2号单元的内容。 mov al,2 ;向al写入2 out 70,al ;将2送入端口70h in al,71 ;从端口71h读取2号单元的内容在CMOS RAM中用6个字节存放当前时间&#xff08;以BCD码形式存放&#xff09;&…...

Axure原型设计项目效果 全国职业院校技能大赛物联网应用开发赛项项目原型设计题目

目录 前言 一、2022年任务书3效果图 二、2022年任务书5效果图 三、2022年国赛正式赛卷 四、2023年国赛第一套样题 五、2023年国赛第二套样题 六、2023年国赛第三套样题 七、2023年国赛第四套样题 八、2023年国赛第七套样题 九、2023年国赛正式赛题&#xff08;第八套…...

力扣串题:字符串中的第一个唯一字母

映射做法&#xff1a;将字母转为数字之类的转化必须在运算中实现如-a int firstUniqChar(char * s){int a[26] {0};int len strlen(s);int i;for (i 0; i < len; i)a[s[i] - a];for (i 0; i < len; i) {if (a[s[i] - a] 1)return i;}return -1; }...

【五、接口自动化测试】GET/POST 请求区别

大家好&#xff0c;我是山茶&#xff0c;一个探索AI 测试的程序员 在网上看到了许多关于post与get之间区别的帖子&#xff0c;也有很多帖子是直接粘贴复制的&#xff0c;甚至连标题、符号都没改&#xff0c;甚至还有很多争议 一、post、get 关于post与get之间区别&#xff0c;…...

HDOJ 2036

改革春风吹满地 Problem Description “ 改革春风吹满地, 不会AC没关系; 实在不行回老家&#xff0c; 还有一亩三分地。 谢谢!&#xff08;乐队奏乐&#xff09;” 话说部分学生心态极好&#xff0c;每天就知道游戏&#xff0c;这次考试如此简单的题目&#xff0c;也是云里雾…...

2.案例、鼠标时间类型、事件对象参数

案例 注册事件 <!-- //disabled默认情况用户不能点击 --><input type"button" value"我已阅读用户协议(5)" disabled><script>// 分析&#xff1a;// 1.修改标签中的文字内容// 2.定时器// 3.修改标签的disabled属性// 4.清除定时器// …...

OPENCV(0-1之0.0)

OPENCV 第1周&#xff1a;基础知识和安装目标内容 第2-3周&#xff1a;图像处理基础目标内容 第4-5周目标内容 第6-7周目标内容 第8周及以后目标内容 时间安排如下&#xff1a; 第1周&#xff1a;基础知识和安装 目标 了解计算机视觉的基本概念&#xff0c;安装OpenCV&#x…...

easyrecovery破解版百度云(含Mac/Win版)以及EasyRecovery可以恢复哪些设备

软件介绍 当不小心将回收站的文件删除了怎么办&#xff1f;想找回但是不知道怎么找回需要的数据文件&#xff1f;别担心今天小编就为大家介绍一款非常专业的电脑数据文件恢复工具&#xff0c;easyrecovery14是由Ontrack专为电脑用户推出的一款专业的数据恢复软件&…...

[2023年]-hadoop面试真题(一)

&#xff08;北京&#xff09;HDFS底层存储原理? (北京) HDFS读写数据流程? (北京) HDFS如何管理元数据或者checkpoint的理解 ? (北京) HDFS常用命令 ? (北京) hadoop调优 (北京) HDFS扩容原理 (北京) HDFS有哪些进程,分别是什么? (北京) HDFS中大量小文件对…...

Kubernetes kafka系列 | k8s部署kafka+zookeepe集群

一、kafka.zookeeper介绍 Kafka 简介&#xff1a; Apache Kafka 是一个开源的分布式流处理平台和消息队列系统。它最初由LinkedIn开发&#xff0c;并于2011年成为Apache软件基金会的顶级项目。 特点&#xff1a; 高吞吐量&#xff1a; Kafka 能够处理大规模的消息流&#xf…...

ip广播智慧工地广播喊话号角 IP网络号角在塔吊中应用 通过寻呼话筒预案广播

ip广播智慧工地广播喊话号角 IP网络号角在塔吊中应用 通过寻呼话筒预案广播 SV-704XT是深圳锐科达电子有限公司的一款壁挂式网络有源号角&#xff0c;具有10/100M以太网接口&#xff0c;可将网络音源通过自带的功放和号角喇叭输出播放&#xff0c;可达到功率50W。SV-704XT内置有…...

B端系统优化,可不是换个颜色和图标,看看与大厂系统的差距。

、不要被流于表面的需求描述迷惑。 很多人找我们优化系统界面&#xff0c;对需求总是轻描淡写&#xff0c;比如&#xff1a;换个颜色、换个图标、换个皮肤&#xff0c;甚至还有的说&#xff0c;随便改下就行。 这些需求都是听起来简单&#xff0c;实现起来难&#xff0c;你如…...

【LeetCode热题100】240. 搜索二维矩阵 II

一.题目要求 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。 ‘每列的元素从上到下升序排列。 二.题目难度 中等 三.输入样例 示例 1&#xff1a; 输入&#xff1a;matrix [[1,4,7…...