当前位置: 首页 > news >正文

八、词嵌入语言模型(Word Embedding)

词嵌入(Word Embedding, WE),任务是把不可计算、非结构化的词转换为可以计算、结构化的向量,从而便于进行数学处理。

一个更官方一点的定义是:词嵌入是是指把一个维数为所有词的数量的高维空间(one-hot形式表示的词)【嵌入】到一个维数低得多的连续向量空间中,每个单词或词组被映射为实数域上的向量。

 Word Embedding 解决了 One-Hot 独热编码的两个问题。参考:一、独热编码(One-Hot)

  • Word Embedding 矩阵给每个单词分配一个固定长度的向量表示,这个长度可以自行设定,实际上会远远小于字典长度,将词向量映射到了一个更低维的空间。
  • Word Embedding 矩阵使两个词向量之间的夹角值(最常用到的相似度计算函数是余弦相似度(cosine similarity))作为他们之间关系的一个衡量,保持词向量在该低维空间中具备语义相似性,越相关的词,它们的向量在这个低维空间里靠得越近。

Word Embedding 示例图:参考Word Embedding介绍

展示将 “way back into love” 翻译成中文的过程: 

第一步:将 “way back into love” 四个词分别用四个不同的向量表示(图中采用 One-Hot 独热编码方式为例);

第二步:通过 Word2vec/GloVe 等词嵌入Word Embedding 方法提取文本特征,并将这四个高维向量进行降维,得到四个词各自对应的 embedding(图中以 2 维向量作为示例)。

第三步:需要再经过 Model 之后做进一步的提取文本特征,才能得到对 “way back into love” 的翻译结果。

1 Word2Vec

Word2Vec 中有两种基本的模型:CBOW 和 Skip-Gram。参考自然语言处理与词嵌入

1.1 连续词袋模型(CBOW)

连续词袋模型(Continuous Bag-of-Words Model, CBOW)是通过用环境中的每一个词去预测中心词。相当于一句话中扣掉一个词,让你猜这个词是什么。其本质是通过背景词(context word)来预测一个单词是否是中心词(center word)。

CBOW 示例:参考更详细的示例解析

XX...
输入输出输入...
  • 在 CBOW 中,会定义一个为 window_size 的参数,假如 window 的大小为 1,那么中心词的前 1 个词和后面 1 个词就被选入了我们的窗口里,以 XX 为例,上下文的词为    ['我', '你'] 。 
  • 然后模型先将每个字符处理为 One-Hot 形式,其中维度大小为词表的大小(不同词的个数)。例如,一篇文章由 1000 个不同的词构成,那么词表大小即为1000,每个词的 One-Hot 编码大小为 1*1000。
  • 接着,将 One-Hot 向量进行相加。获得了一个输入向量以及目标向量后,将输入向量 X输入全连接层(设置好维度参数)中,进行参数的优化训练。(这里优化的目标是让模型能够学的词与词之间的上下文关系,我们的代价函数就是使得 sofamax 中预测的分布 y 与真实值 Y 这两个矩阵的交叉熵最小化,也可以最小化这两个矩阵的差平方,即损失值)
  • 训练结束后,对我们真正有用的是隐藏层中的权重 W,这就是我们所需要的词向量。 

CBOW 原理图:

1.2 Skip-Gram

Skip-Gram 是通过用中心词来预测上下文。其本质则是在给定中心词(center word)的情况下,预测一个词是否是它的上下文(context word)。

CBOW 示例:参考网络模型是如何计算的

XXXX
输出输入输出

Skip-Gram 原理图:

  • 输入的中心词 One-Hot 独热编码向量
  • 输入乘以 center word 的矩阵 W 得到词向量
  • 词向量乘以另一个context word 的矩阵 W(t) 得到对每个词语的相似度
  • 对相似度得分取 Softmax 得到概率,与答案对比计算损失。

我们提到预测中心词和上下文的最终目的还是通过中心词和上下文,去训练得到单词语义上的关系,同时还做了降维,最终得到想要的 embedding 了。

1.3 缺点

由于词和向量是一对一的关系,所以 Word2vec 无法解决多义词的问题。

 2 GloVe

GloVe 的全称叫 Global Vectors for Word Representation,它是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity)、类比性(analogy)等。参考GloVe

共现矩阵(Co-Occurrence Matrix)指的是矩阵中的每一个元素 Xij 代表单词 i 和上下文单词 j 在特定大小的上下文窗口(context window)内共同出现的次数。

例如,语料库(corpus)中有如下两句话:

  • 句子1:小唐喜欢看电视剧,小王也喜欢看电视剧
  • 句子2:小唐还喜欢看电影

有以上两句话,设置滑窗为2,可以得到一个词典为:{'小唐', '小王', '还', '也', '喜欢', '看', '电视剧', '电影'}。这样我们可以得到一个共现矩阵(对称矩阵):

小唐小王喜欢电视剧电影
小唐00101000
小王00010000
10001000
01001000
喜欢10110300
00003021
电视剧00000200
电影00000100

GloVe 模型仅对单词共现矩阵中的非零元素训练,从而有效地利用全局统计信息,并生成有意义的子结构向量空间。给出相同的语料库,词汇,窗口大小和训练时间,它的表现都优于 Word2Vec,它可以更快地实现更好的效果,并且无论速度如何,都能获得最佳效果。

相关文章:

八、词嵌入语言模型(Word Embedding)

词嵌入(Word Embedding, WE),任务是把不可计算、非结构化的词转换为可以计算、结构化的向量,从而便于进行数学处理。 一个更官方一点的定义是:词嵌入是是指把一个维数为所有词的数量的高维空间(one-hot形式…...

重学SpringBoot3-WebMvcConfigurer接口

摘要: 本文详细介绍了SpringBoot 3中的WebMvcConfigurer接口,旨在帮助读者深入理解其原理和实现,从而能够更好地使用SpringBoot进行Web开发。阅读本文需要大约30分钟。 关键词:SpringBoot, WebMvcConfigurer, SpringMVC, Web开发…...

《深入理解springCloud与微服务》笔记

第一章 微服务介绍 1.3 微服务的不足 1.3.2 分布式事务 CAP 理论,即同时满足“一致性”“可用性”和“分区容错”是 件不可能的事。 Consistency :指数据的强一致性。如果写入某个数据成功,之后读取,读到的都是新写入的数据&a…...

Vivado原语模板

1.原语的概念 原语是一种元件! FPGA原语是芯片制造商已经定义好的基本电路元件,是一系列组成逻辑电路的基本单元,FPGA开发者编写逻辑代码时可以调用原语进行底层构建。 2.原语的分类 原语可分为预定义原语和用户自定义原语。预定义原语为如and/or等门级原语不需要例化,可以…...

【linux本地安装tinycudann包教程】

【linux本地安装tinycudann包教程】 tiny-cuda-nn官网链接 如果你是windows 10系统的,想要安装tiny-cuda-nn可以参考我的文章——windows 10安装tiny-cuda-n包 根据官网要求:C++要求对应14,其实这样就已经告诉我们linux系统中的gcc版本不能高于9,同时下面又告诉我们gcc版…...

使用Nginx进行负载均衡

什么是负载均衡 Nginx是一个高性能的开源反向代理服务器,也可以用作负载均衡器。通过Nginx的负载均衡功能,可以将流量分发到多台后端服务器上,实现负载均衡,提高系统的性能、可用性和稳定性。 如下图所示: Nginx负…...

什么护眼台灯效果好?热门护眼台灯全方位测评推荐

台灯可以说是佳佳必备,尤其是家中有正在上学的孩子的更是需要一款好的台灯,不管是看书、写字都离不开台灯。不过很多家长在挑选台灯时往往仅关注到光线亮度是否充足,而忽略掉光线均匀度、舒适度等等方面的问题。所以选择一款优质的护眼台灯是…...

云上三问,迈向智能时代的关键

在今天的中国,第一热词是什么?面对这个问题,“新质生产力”当仁不让,而智能化技术毫无疑问是“新质生产力”最重要的来源之一。 在这样的大势下,大型政企是向新技术要“新质生产力”的时代先锋。云服务,则是…...

【网络安全】手机不幸被远程监控,该如何破解,如何预防?

手机如果不幸被远程监控了,用三招就可以轻松破解,再用三招可以防范于未然。 三招可破解可解除手机被远程监控 1、恢复出厂设置 这一招是手机解决软件故障和系统故障的终极大招。只要点了恢复出厂设置,你手机里后装的各种APP全部将灰飞烟灭…...

每日OJ题_哈希表④_力扣219. 存在重复元素 II

目录 力扣219. 存在重复元素 II 解析代码 力扣219. 存在重复元素 II 219. 存在重复元素 II 难度 简单 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&am…...

42.坑王驾到第八期:uniCloud报错

uniCloud 报错 今天调用云函数来调试小程序的时候突然暴了一个奇葩错误&#xff0c;require(…).main is not a function。翻官方文档后发现&#xff0c;原来是这样&#xff1a;**如果你写的是云对象&#xff0c;入口文件应为 index.obj.js&#xff0c;如果你写的是云函数入口…...

Linux常用操作命令

Linux常用操作命令 1.文件管理catfile 2.文档编辑3.文件传输4.磁盘管理5.磁盘维护6.网络通讯7.系统管理8.系统设置9.备份压缩10.设备管理 Linux 英文解释为 Linux is not Unix。 Linux内核最初只是由芬兰人李纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;在赫尔辛基大学上…...

OpenCV的常用数据类型

OpenCV涉及的常用数据类型除包含C的基本数据类型,如&#xff1a;char、uchar&#xff0c;int、unsigned int,short 、long、float、double等数据类型外, 还包含Vec&#xff0c;Point、Scalar、Size、Rect、RotatedRect、Mat等类。C中的基本数据类型不需再做说明下面重点介绍一下…...

STM32串口通信—串口的接收和发送详解

目录 前言&#xff1a; STM32串口通信基础知识&#xff1a; 1&#xff0c;STM32里的串口通信 2&#xff0c;串口的发送和接收 串口发送&#xff1a; 串口接收&#xff1a; 串口在STM32中的配置&#xff1a; 1. RCC开启USART、串口TX/RX所对应的GPIO口 2. 初始化GPIO口 …...

《汇编语言》第3版 (王爽) 第14章

第14章 端口 检测点14.1 &#xff08;1&#xff09;.编程&#xff0c;读取CMOS RAM的2号单元的内容。 mov al,2 ;向al写入2 out 70,al ;将2送入端口70h in al,71 ;从端口71h读取2号单元的内容在CMOS RAM中用6个字节存放当前时间&#xff08;以BCD码形式存放&#xff09;&…...

Axure原型设计项目效果 全国职业院校技能大赛物联网应用开发赛项项目原型设计题目

目录 前言 一、2022年任务书3效果图 二、2022年任务书5效果图 三、2022年国赛正式赛卷 四、2023年国赛第一套样题 五、2023年国赛第二套样题 六、2023年国赛第三套样题 七、2023年国赛第四套样题 八、2023年国赛第七套样题 九、2023年国赛正式赛题&#xff08;第八套…...

力扣串题:字符串中的第一个唯一字母

映射做法&#xff1a;将字母转为数字之类的转化必须在运算中实现如-a int firstUniqChar(char * s){int a[26] {0};int len strlen(s);int i;for (i 0; i < len; i)a[s[i] - a];for (i 0; i < len; i) {if (a[s[i] - a] 1)return i;}return -1; }...

【五、接口自动化测试】GET/POST 请求区别

大家好&#xff0c;我是山茶&#xff0c;一个探索AI 测试的程序员 在网上看到了许多关于post与get之间区别的帖子&#xff0c;也有很多帖子是直接粘贴复制的&#xff0c;甚至连标题、符号都没改&#xff0c;甚至还有很多争议 一、post、get 关于post与get之间区别&#xff0c;…...

HDOJ 2036

改革春风吹满地 Problem Description “ 改革春风吹满地, 不会AC没关系; 实在不行回老家&#xff0c; 还有一亩三分地。 谢谢!&#xff08;乐队奏乐&#xff09;” 话说部分学生心态极好&#xff0c;每天就知道游戏&#xff0c;这次考试如此简单的题目&#xff0c;也是云里雾…...

2.案例、鼠标时间类型、事件对象参数

案例 注册事件 <!-- //disabled默认情况用户不能点击 --><input type"button" value"我已阅读用户协议(5)" disabled><script>// 分析&#xff1a;// 1.修改标签中的文字内容// 2.定时器// 3.修改标签的disabled属性// 4.清除定时器// …...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...