C# danbooru Stable Diffusion 提示词反推 Onnx Demo
目录
说明
效果
模型信息
项目
代码
下载
C# danbooru Stable Diffusion 提示词反推 Onnx Demo
说明
模型下载地址:https://huggingface.co/deepghs/ml-danbooru-onnx
效果
模型信息
Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[-1, 12547]
---------------------------------------------------------------
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;StringBuilder sb = new StringBuilder();public string[] class_names;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;textBox1.Text = "";sb.Clear();Application.DoEvents();image = new Mat(image_path);// 将图片转为RGB通道Cv2.CvtColor(image, image, ColorConversionCodes.BGR2RGB);// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, image.Height, image.Width });// 输入Tensorfor (int y = 0; y < image.Height; y++){for (int x = 0; x < image.Width; x++){input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();var result_array = result_tensors.ToArray();double[] scores = new double[result_array.Length];for (int i = 0; i < result_array.Length; i++){double score = 1 / (1 + Math.Exp(result_array[i] * -1));scores[i] = score;}List<ScoreIndex> ltResult = new List<ScoreIndex>();ScoreIndex temp;for (int i = 0; i < scores.Length; i++){temp = new ScoreIndex(i, scores[i]);ltResult.Add(temp);}//根据分数倒序排序,取前10个var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(10);foreach (var item in SortedByScore){sb.Append(class_names[item.Index] + ",");}sb.Length--; // 将长度减1来移除最后一个字符sb.AppendLine("");sb.AppendLine("------------------");// 只取分数最高的// float max = result_array.Max();// int maxIndex = Array.IndexOf(result_array, max);// sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");textBox1.Text = sb.ToString();button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/ml_danbooru.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/2.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);List<string> str = new List<string>();StreamReader sr = new StreamReader("model/lable.txt");string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_names = str.ToArray();}}
}
下载
源码下载
相关文章:

C# danbooru Stable Diffusion 提示词反推 Onnx Demo
目录 说明 效果 模型信息 项目 代码 下载 C# danbooru Stable Diffusion 提示词反推 Onnx Demo 说明 模型下载地址:https://huggingface.co/deepghs/ml-danbooru-onnx 效果 模型信息 Model Properties ------------------------- ----------------------…...

Windows系统搭建Cloudreve结合内网穿透打造可公网访问的私有云盘
目录 ⛳️推荐 1、前言 2、本地网站搭建 2.1 环境使用 2.2 支持组件选择 2.3 网页安装 2.4 测试和使用 2.5 问题解决 3、本地网页发布 3.1 cpolar云端设置 3.2 cpolar本地设置 4、公网访问测试 5、结语 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站ÿ…...

upload-labs 0.1 靶机详解
下载地址https://github.com/c0ny1/upload-labs/releases Pass-01 他让我们上传一张图片,我们先尝试上传一个php文件 发现他只允许上传图片格式的文件,我们来看看源码 我们可以看到它使用js来限制我们可以上传的内容 但是我们的浏览器是可以关闭js功能的…...

react 综合题-旧版
一、组件基础 1. React 事件机制 javascript 复制代码<div onClick{this.handleClick.bind(this)}>点我</div> React并不是将click事件绑定到了div的真实DOM上,而是在document处监听了所有的事件,当事件发生并且冒泡到document处的时候&a…...

基于ElasticSearch存储海量AIS数据:AIS数据索引机制篇
文章目录 引言I 预备知识1.1 索引结构1.2 AIS信息项II AIS数据索引2.1 AIS数据静态数据索引2.2 AIS数据动态信息索引2.3 引入静态信息的AIS数据轨迹信息索引引言 AIS数据信息根据其不同更新频率可分为静态和动态信息。索引结构设计包含了静态、动态和轨迹信息索引。同时,为了…...

IDEA中返回上一步和下一步快捷键失效【Ctrl+Alt+左箭头】
原因与解决方法 快捷键失效的缘故,和其它软件的快捷键冲突。方法:改变快捷键。如果不知道哪个软件影响的,一个一个关闭软件,然后再去IDEA中尝试快捷键是否生效。 【提示:我的是QQ音乐软件打开影响的】...

Hubspot 2023年推荐使用的11个AI视频生成器
视频是任何营销活动不可或缺的一部分;然而,如果你不懂编辑或时间紧迫,它们可能会很乏味,很难创建。一只手从电脑里伸出来,拳头碰到另一只手;代表AI视频生成器。 幸运的是,你可以利用许多人工智能…...

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-2、线条平滑曲面且可通过面观察柱体变化(二)
环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...

[2024年]-flink面试真题(四)
(上海) Flink与Spark有什么主要区别?(上海) 关于Flink的流处理和批处理,你了解多少?(上海) 你能解释一下Flink的架构吗?(上海) Flink是如何处理事件时间(Event Time)和处理时间(Processing Time…...

基于SpringBoot+Druid实现多数据源:原生注解式
前言 本博客姊妹篇 基于SpringBootDruid实现多数据源:原生注解式基于SpringBootDruid实现多数据源:注解编程式基于SpringBootDruid实现多数据源:baomidou多数据源 一、功能描述 配置方式:配置文件中实现多数据源,非…...

AJAX 03 XMLHttpRequest、Promise、封装简易版 axios
AJAX 学习 AJAX 3 原理01 XMLHttpRequest① XHR 定义② XHR & axios 关系③ 使用 XHR④ XHR查询参数案例:地区查询(URLSearchParams)⑤ XHR数据提交 POST 02 PromisePromise 使用Promise - 三种状态案例:使用Promise XHR 获取…...

如何将办公资料文件生成二维码?扫码可看详情
日常办公的时候,经常会需要应用二维码来向同事或者客户发送和展示一些资料。比如包含企业介绍和产品介绍的资料、一些操作流程的资料、产品展示宣传视频、活动安排详情、比赛流程、会议资料… 这些都能通过一个文件二维码来展示。 文件二维码支持将PDF文件生成二维…...

【Streamlit学习笔记】实现包含多个sheet的excel文件下载
1、什么是Streamlit Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的机器学习和数据科学Web应用程序,官网链接 Streamlit Streamlit API链接 API reference 实际项目中遇到的问题:包含多个sheet的excel文件下载,下面将给…...

[Redis]——主从同步原理(全量同步、增量同步)
目录 Redis集群: 主从同步原理: replid和offset: 全量同步和增量同步: repl_baklog文件: 主从集群的优化: Redis集群: 部署多台Redis我们称之为Redis集群,他有一个主节点(负责写操作)&…...

Buildroot 之二 详解构建架构、流程、external tree、示例
构建系统 Buildroot 中的构建系统使用的是从 Linux Kernel(4.17-rc2) 中移植的 Kconfig(配置) + Makefile & Kbuild(编译)这套构建系统,移植后的源码位于 support/kconfig/ 目录下。Buildroot 本身是一个构建系统,与直接编译源码不同,因此,它对这套系统进行了比较…...

牛客小白月赛61-C-小喵觅食
很经典的bfs,就是从猫咪和MM的坐标开始bfs搜索 不过这题有些小细节需要注意 1.认真审题,注意,猫一旦闻到小鱼干的味道,开始动,此时MM就不动了,一开始没仔细审题,很不好的习惯 2.注意移动的条件,vis,不是墙,距离是MM的移动距离范围内 3.这个猫咪的r2是闻味道的r2,不是移动距…...

200 名专家编写报告:AI 发展可能对人类构成「灭绝级威胁」
3 月 14 日消息,美国国务院委托编写了一份新报告,警告 AI 正呈指数级发展,可能会对人类构成「灭绝级威胁」。 这份报告全称为《提高先进人工智能安全保障的行动计划》,要求美国政府必须迅速、果断地采取行动,以避免 A…...

学习Android的第二十九天
目录 Android Service 与 Activity 通讯 范例 Android Service Alarm 定时广播 Alarm Alarm 使用流程 范例 Android IBinder Binder 为什么是 Binder ? Android Service 与 Activity 通讯 Activity 与 Service 通信的媒介就是 Service 中的 onBind() 方法࿰…...

SpringMVC重点记录
目录 1.学习重点2.回顾MVC3.回顾servlet4.初始SpringMVC4.1.为什么要学SpringMVC?4.2.SpringMVC的中重点DispatcherServlet4.3.SpringMVC项目的搭建4.4.MVC框架要做哪些事情?4.5.可能会遇到的问题 5.SpringMVC的执行原理6.使用注解开发SpringMVC7.Controller控制总结8.RestF…...

一条 SQL 更新语句如何执行的
Server 层 存储引擎层 总流程 查询语句 连接器 查询缓存 分析器 优化器 执行器 更新语句 redo log(节省的是随机写磁盘的 IO 消耗(转成顺序写&#x…...

Github上哪些好用的安全工具1
专注于web漏洞挖掘、内网渗透、免杀和代码审计,感谢各位师傅的关注!网安之路漫长,与君共勉! URLFinder 一款快速提取网页信息的工具。该项目可以快速爬取网页上的 URL 地址、JS 文件里的 API 接口等信息,支持批量抓取…...

手写Mybatis自动填充插件
目录 一、Mybatis插件简介🥙二、工程创建及前期准备工作🥫实现代码配置文件 三、插件核心代码实现🍗四、测试🥓 一、Mybatis插件简介🥙 Mybatis插件运行原理及自定义插件_简述mybatis的插件运行原理,以及如何编写一个…...

upload文件上传漏洞复现
什么是文件上传漏洞: 文件上传漏洞是指由于程序员在对用户文件上传部分的控制不足或者处理缺陷,而导致的用户可以越过其本身权限向服务器上上传可执行的动态脚本文件。这里上传的文件可以是木马,病毒,恶意脚本或者WebShell等。“…...

Docker 安装部署 SqlServer 数据库
Docker 安装部署 SqlServer 数据库 背景: 最近在开发数据中台数据集成模块,需要对接大量的数据做测试, 由于SqlServer 下载安装会耗费大量时间,所以采用 Docker 安装 Sqlserver 的方式部署数据库。 1、拉去 sqlserver 镜像 …...

cmath 中cos sin等常用函数的坑(弧度角度换算)
cmath中三角函数的输入是弧度,不是角度.忘了这件事,找bug找了好久! 弧度是旧称弪。在数学和物理中,弧度是角的度量单位。它是由国际单位制导出的单位,单位缩写是rad。弧度是指在一个圆中,弧长和半径之比,即|弧度|弧长半径。 角度…...

深度解析HTTP反向代理-okey proxy
反向代理這個概念可能並不常見,但其實它對於提升網路安全和訪問速度方面發揮著很大作用。 HTTP反向代理(HTTP Reverse Proxy)是一種特殊的代理伺服器,首先它能夠接收互聯網上的連接請求,然後將這些請求轉發給內部網路…...

SwinIR训练报错解决
swinir训练报错解决 记录swinir图像超分重建算法复现过程中的报错信息,并提供相应的解决方案 报错信息 UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pyto…...

C++类和对象一
#include <iostream> using namespace std;//设计一个学生类 class CStudent {public: //公有成员void InputData(){cout << "请输入学号";cin >> sno;cout << "请输入姓名";cin >> sname;cout << "请输入分…...

Linux之线程互斥
目录 一、问题引入 二、线程互斥 1、相关概念 2、加锁保护 1、静态分配 2、动态分配 3、锁的原理 4、死锁 三、可重入与线程安全 1、概念 2、常见的线程不安全的情况 3、常见的线程安全的情况 4、常见不可重入的情况 5、常见可重入的情况 6、可重入与线程安全联系…...

C++ 拷贝构造函数和运算符重载
目录 一. 拷贝构造函数 1. 引入 2. 拷贝构造的概念 3. 浅拷贝 4. 深拷贝 二. C运算符重载 1. 概念 2. 注意事项 3.举例 一. 拷贝构造函数 1. 引入 我们在创建对象时,能不能创建一个与原先对象一模一样的新对象呢?为了解决这个问题&#x…...