当前位置: 首页 > news >正文

C# danbooru Stable Diffusion 提示词反推 Onnx Demo

目录

说明

效果

模型信息

项目

代码

下载 


C# danbooru Stable Diffusion 提示词反推 Onnx Demo

说明

模型下载地址:https://huggingface.co/deepghs/ml-danbooru-onnx

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[-1, 12547]
--------------------------------------------------------------- 

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;StringBuilder sb = new StringBuilder();public string[] class_names;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;textBox1.Text = "";sb.Clear();Application.DoEvents();image = new Mat(image_path);// 将图片转为RGB通道Cv2.CvtColor(image, image, ColorConversionCodes.BGR2RGB);// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, image.Height, image.Width });// 输入Tensorfor (int y = 0; y < image.Height; y++){for (int x = 0; x < image.Width; x++){input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();var result_array = result_tensors.ToArray();double[] scores = new double[result_array.Length];for (int i = 0; i < result_array.Length; i++){double score = 1 / (1 + Math.Exp(result_array[i] * -1));scores[i] = score;}List<ScoreIndex> ltResult = new List<ScoreIndex>();ScoreIndex temp;for (int i = 0; i < scores.Length; i++){temp = new ScoreIndex(i, scores[i]);ltResult.Add(temp);}//根据分数倒序排序,取前10个var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(10);foreach (var item in SortedByScore){sb.Append(class_names[item.Index] + ",");}sb.Length--; // 将长度减1来移除最后一个字符sb.AppendLine("");sb.AppendLine("------------------");// 只取分数最高的// float max = result_array.Max();// int maxIndex = Array.IndexOf(result_array, max);// sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");textBox1.Text = sb.ToString();button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/ml_danbooru.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/2.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);List<string> str = new List<string>();StreamReader sr = new StreamReader("model/lable.txt");string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_names = str.ToArray();}}
}

下载 

源码下载

相关文章:

C# danbooru Stable Diffusion 提示词反推 Onnx Demo

目录 说明 效果 模型信息 项目 代码 下载 C# danbooru Stable Diffusion 提示词反推 Onnx Demo 说明 模型下载地址&#xff1a;https://huggingface.co/deepghs/ml-danbooru-onnx 效果 模型信息 Model Properties ------------------------- ----------------------…...

Windows系统搭建Cloudreve结合内网穿透打造可公网访问的私有云盘

目录 ⛳️推荐 1、前言 2、本地网站搭建 2.1 环境使用 2.2 支持组件选择 2.3 网页安装 2.4 测试和使用 2.5 问题解决 3、本地网页发布 3.1 cpolar云端设置 3.2 cpolar本地设置 4、公网访问测试 5、结语 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff…...

upload-labs 0.1 靶机详解

下载地址https://github.com/c0ny1/upload-labs/releases Pass-01 他让我们上传一张图片&#xff0c;我们先尝试上传一个php文件 发现他只允许上传图片格式的文件&#xff0c;我们来看看源码 我们可以看到它使用js来限制我们可以上传的内容 但是我们的浏览器是可以关闭js功能的…...

react 综合题-旧版

一、组件基础 1. React 事件机制 javascript 复制代码<div onClick{this.handleClick.bind(this)}>点我</div> React并不是将click事件绑定到了div的真实DOM上&#xff0c;而是在document处监听了所有的事件&#xff0c;当事件发生并且冒泡到document处的时候&a…...

基于ElasticSearch存储海量AIS数据:AIS数据索引机制篇

文章目录 引言I 预备知识1.1 索引结构1.2 AIS信息项II AIS数据索引2.1 AIS数据静态数据索引2.2 AIS数据动态信息索引2.3 引入静态信息的AIS数据轨迹信息索引引言 AIS数据信息根据其不同更新频率可分为静态和动态信息。索引结构设计包含了静态、动态和轨迹信息索引。同时,为了…...

IDEA中返回上一步和下一步快捷键失效【Ctrl+Alt+左箭头】

原因与解决方法 快捷键失效的缘故&#xff0c;和其它软件的快捷键冲突。方法:改变快捷键。如果不知道哪个软件影响的&#xff0c;一个一个关闭软件&#xff0c;然后再去IDEA中尝试快捷键是否生效。 【提示&#xff1a;我的是QQ音乐软件打开影响的】...

Hubspot 2023年推荐使用的11个AI视频生成器

视频是任何营销活动不可或缺的一部分&#xff1b;然而&#xff0c;如果你不懂编辑或时间紧迫&#xff0c;它们可能会很乏味&#xff0c;很难创建。一只手从电脑里伸出来&#xff0c;拳头碰到另一只手&#xff1b;代表AI视频生成器。 幸运的是&#xff0c;你可以利用许多人工智能…...

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-2、线条平滑曲面且可通过面观察柱体变化(二)

环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...

[2024年]-flink面试真题(四)

(上海) Flink与Spark有什么主要区别&#xff1f;(上海) 关于Flink的流处理和批处理&#xff0c;你了解多少&#xff1f;(上海) 你能解释一下Flink的架构吗&#xff1f;(上海) Flink是如何处理事件时间&#xff08;Event Time&#xff09;和处理时间&#xff08;Processing Time…...

基于SpringBoot+Druid实现多数据源:原生注解式

前言 本博客姊妹篇 基于SpringBootDruid实现多数据源&#xff1a;原生注解式基于SpringBootDruid实现多数据源&#xff1a;注解编程式基于SpringBootDruid实现多数据源&#xff1a;baomidou多数据源 一、功能描述 配置方式&#xff1a;配置文件中实现多数据源&#xff0c;非…...

AJAX 03 XMLHttpRequest、Promise、封装简易版 axios

AJAX 学习 AJAX 3 原理01 XMLHttpRequest① XHR 定义② XHR & axios 关系③ 使用 XHR④ XHR查询参数案例&#xff1a;地区查询&#xff08;URLSearchParams&#xff09;⑤ XHR数据提交 POST 02 PromisePromise 使用Promise - 三种状态案例&#xff1a;使用Promise XHR 获取…...

如何将办公资料文件生成二维码?扫码可看详情

日常办公的时候&#xff0c;经常会需要应用二维码来向同事或者客户发送和展示一些资料。比如包含企业介绍和产品介绍的资料、一些操作流程的资料、产品展示宣传视频、活动安排详情、比赛流程、会议资料… 这些都能通过一个文件二维码来展示。 文件二维码支持将PDF文件生成二维…...

【Streamlit学习笔记】实现包含多个sheet的excel文件下载

1、什么是Streamlit Streamlit是一个免费的开源框架&#xff0c;用于快速构建和共享漂亮的机器学习和数据科学Web应用程序&#xff0c;官网链接 Streamlit Streamlit API链接 API reference 实际项目中遇到的问题&#xff1a;包含多个sheet的excel文件下载&#xff0c;下面将给…...

[Redis]——主从同步原理(全量同步、增量同步)

目录 Redis集群&#xff1a; 主从同步原理&#xff1a; replid和offset: 全量同步和增量同步&#xff1a; repl_baklog文件&#xff1a; 主从集群的优化&#xff1a; Redis集群&#xff1a; 部署多台Redis我们称之为Redis集群&#xff0c;他有一个主节点(负责写操作)&…...

Buildroot 之二 详解构建架构、流程、external tree、示例

构建系统 Buildroot 中的构建系统使用的是从 Linux Kernel(4.17-rc2) 中移植的 Kconfig(配置) + Makefile & Kbuild(编译)这套构建系统,移植后的源码位于 support/kconfig/ 目录下。Buildroot 本身是一个构建系统,与直接编译源码不同,因此,它对这套系统进行了比较…...

牛客小白月赛61-C-小喵觅食

很经典的bfs,就是从猫咪和MM的坐标开始bfs搜索 不过这题有些小细节需要注意 1.认真审题,注意,猫一旦闻到小鱼干的味道,开始动,此时MM就不动了,一开始没仔细审题,很不好的习惯 2.注意移动的条件,vis,不是墙,距离是MM的移动距离范围内 3.这个猫咪的r2是闻味道的r2,不是移动距…...

200 名专家编写报告:AI 发展可能对人类构成「灭绝级威胁」

3 月 14 日消息&#xff0c;美国国务院委托编写了一份新报告&#xff0c;警告 AI 正呈指数级发展&#xff0c;可能会对人类构成「灭绝级威胁」。 这份报告全称为《提高先进人工智能安全保障的行动计划》&#xff0c;要求美国政府必须迅速、果断地采取行动&#xff0c;以避免 A…...

学习Android的第二十九天

目录 Android Service 与 Activity 通讯 范例 Android Service Alarm 定时广播 Alarm Alarm 使用流程 范例 Android IBinder Binder 为什么是 Binder ? Android Service 与 Activity 通讯 Activity 与 Service 通信的媒介就是 Service 中的 onBind() 方法&#xff0…...

SpringMVC重点记录

目录 1.学习重点2.回顾MVC3.回顾servlet4.初始SpringMVC4.1.为什么要学SpringMVC?4.2.SpringMVC的中重点DispatcherServlet4.3.SpringMVC项目的搭建4.4.MVC框架要做哪些事情?4.5.可能会遇到的问题 5.SpringMVC的执行原理6.使用注解开发SpringMVC7.Controller控制总结8.RestF…...

一条 SQL 更新语句如何执行的

Server 层 存储引擎层 总流程 查询语句 连接器 查询缓存 分析器 优化器 执行器 更新语句 redo log&#xff08;节省的是随机写磁盘的 IO 消耗&#xff08;转成顺序写&#x…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...