当前位置: 首页 > news >正文

【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型

1 问题

通过以下代码,实现加载word2vec词向量,每次加载都是几分钟,效率特别低。

from gensim.models import Word2Vec,KeyedVectors# 读取中文词向量模型(需要提前下载对应的词向量模型文件)
word2vec_model = KeyedVectors.load_word2vec_format('hy-tmp/word2vec.bz2', binary=False)

2 解决方案

(1)方案一
第一次加载后保存为能够快速加载的文件,第二次加载就能快读读取。

file_path = "word2vec/train_bio_word"
if os.path.exists(file_path):word2vec_model = KeyedVectors.load(file_path,mmap='r')
else:# 读取中文词向量模型(需要提前下载对应的词向量模型文件)word2vec_model = KeyedVectors.load_word2vec_format('hy-tmp/word2vec.bz2', binary=False)word2vec_model.init_sims(replace=True)word2vec_model.save(file_path)

(2)方案二
第一次加载后,只将使用到的词向量以表格的形式保存到本地,第二次读取就不需要加载全部word2vec的,只加载表格中的词向量。

file_path = "word2vec/train_vocabulary_vector.csv"
if os.path.exists(file_path):# 读取词汇-向量字典,csv转字典vocabulary_vector = dict(pd.read_csv(file_path))# 此时需要将字典中的词向量np.array型数据还原为原始类型,方便以后使用for key,value in vocabulary_vector.items():vocabulary_vector[key] = np.array(value)else:# 所有文本构建词汇表,words_cut 为分词后的list,每个元素为以空格分隔的str.vocabulary = list(set([word for item in text_data1 for word in item]))# 构建词汇-向量字典vocabulary_vector = {}for word in vocabulary:if word in word2vec_model:vocabulary_vector[word] = word2vec_model[word]# 储存词汇-向量字典,由于json文件不能很好的保存numpy词向量,故使用csv保存pd.DataFrame(vocabulary_vector).to_csv(file_path)

(3)方案三
不使用word2vec的原训练权重,使用Embedding工具库。自动下载权重文件后,高效使用。
参考:https://github.com/vzhong/embeddings
安装库

pip install embeddings  # from pypi
pip install git+https://github.com/vzhong/embeddings.git  # from github
from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbeddingg = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:print('embedding {}'.format(w))print(g.emb(w))print(f.emb(w))print(k.emb(w))print(c.emb(w))

相关文章:

【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型

1 问题 通过以下代码,实现加载word2vec词向量,每次加载都是几分钟,效率特别低。 from gensim.models import Word2Vec,KeyedVectors# 读取中文词向量模型(需要提前下载对应的词向量模型文件) word2vec_model KeyedV…...

前端实例:页面布局1(后端数据实现)

效果图 注&#xff1a;这里用到后端语言php&#xff08;页面是.php文件&#xff09;,提取纯html也可以用 inemployee_index.php <?php include(includes/session.inc); $Title _(内部员工首页); $ViewTopic 内部员工首页; $BookMark 内部员工首页; include(includes/…...

【调参】如何为神经网络选择最合适的学习率lr-LRFinder-for-Keras

【调参】如何为神经网络选择最合适的学习率lr-LRFinder-for-Keras_学习率选择-CSDN博客文章浏览阅读9.2k次&#xff0c;点赞6次&#xff0c;收藏55次。keras 版本的LRFinder&#xff0c;借鉴 fast.ai Deep Learning course。前言学习率lr在神经网络中是最难调的全局参数&#x…...

【设计模式】Java 设计模式之享元模式(Flyweight)

享元模式&#xff08;Flyweight&#xff09;的深入分析 一、概述 享元模式是一种结构型设计模式&#xff0c;它提供了一种有效的方式来减少在大量对象中产生的内存开销。通过共享尽可能多的对象&#xff0c;享元模式可以使程序更高效地使用内存。享元模式常用于那些创建对象实…...

异次元发卡源码系统/荔枝发卡V3.0二次元风格发卡网全开源源码

– 支付系统&#xff0c;已经接入易支付及Z支付免签接口。 – 云更新&#xff0c;如果系统升级新版本&#xff0c;你无需进行繁琐操作&#xff0c;只需要在你的店铺后台就可以无缝完成升级。 – 商品销售&#xff0c;支持商品配图、会员价、游客价、邮件通知、卡密预选&#…...

腾讯春招后端一面(八股篇)

前言 前几天在网上发了腾讯面试官问的一些问题&#xff0c;好多小伙伴关注&#xff0c;今天对这些问题写个具体答案&#xff0c;博主好久没看八股了&#xff0c;正好复习一下。 面试手撕了三道算法&#xff0c;这部分之后更&#xff0c;喜欢的小伙伴可以留意一下我的账号。 1…...

“风口”上的量化大厂“绣球”抛向中低频人才

量化人才这几年是人才舞台上的“香饽饽”。 遵循着低频不如高频、小厂不如大厂的薪资逻辑&#xff0c;各路人才被各路机构“哄抢”&#xff0c;薪资一路走高。 但2024年的“信号”再强烈不过——量化大厂们到了改变的时候了。 而量化大厂们显然对此已“心知肚明”....... “…...

obdiag如何实现一键采集20+故障场景的诊断信息——《OceanBase诊断系列》之九

作者简介&#xff1a;靖顺&#xff0c;OcenaBase 开发工程师&#xff0c;专注于数据库诊断与调优 1. 前言 在2024年初&#xff0c;我与一线运维人员交流时&#xff0c;他们纷纷提及在运维过程中遭遇的难题——OceanBase出现问题时&#xff0c;排查工作不容易&#xff0c;有时需…...

Cookie和Session的获取方法

1、Cookie的简单获取方法&#xff08;可以获取到所有的cookie&#xff09; &#xff08;1&#xff09;在参数里还有HttpServletResponse response这些&#xff0c;这些都是内置对象需要就拿不需要就删掉就可以&#xff0c;在这里我们用到的是HttpServletRequest request &…...

旅游市场游客满意度调查报告

民安智库开展游客满意度调查主要通过问卷调查的方式进行&#xff0c;在设计问卷时&#xff0c;应确保问题覆盖游客在某省旅游过程中可能遇到的各个方面&#xff0c;包括交通、住宿、餐饮、旅游景点、导游服务等。此外&#xff0c;还可以设置一些开放性问题&#xff0c;让游客提…...

为什么选用python开发web?

目前&#xff0c;不少公司在用python做web开发&#xff0c;前司用pythonflask做内容审核的后端。 java和php在web开发领域积累较久&#xff0c;有丰富的web开发生态组件可以使用&#xff0c;性能稳定&#xff0c;扩展性强&#xff0c;这个是事实&#xff0c;从这方面来讲&…...

C# Chart曲线控件专题

1.控件基本设置 chart1.ChartAreas[0].AxisY.IsStartedFromZero false; //设置Y轴自适应chart1.Series["瞬时值"].BorderWidth 2; // 设置曲线宽度为2个像素&#xff0c;注意[]中写入的Series的Namechart1.Series["瞬时值"].Color Color.Red; // 设置曲…...

Spring:StopWatch

文章目录 一、介绍二、使用1、导入相关的Spring包2、创建StopWatch实例和开始计时3、停止计时4、获取时间5、获取任务详情6、分阶段计时7、获取总耗时与各阶段耗时 三、案例 一、介绍 在Spring框架中&#xff0c;StopWatch类通常用于测量代码块的执行时间。您可以使用StopWatc…...

考研C语言复习进阶(5)

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 4. 文件的顺序读写 ​编辑 ​编辑 4.1 对比一组函数&#xff1a; ​编辑 5. 文件的随机读写 5.1 fseek 5.2 ftell 5.3 rewind…...

[uni-app] 小程序码转为二维码, 小程序解析此码获取数据

小程序码缩小后太细, 不好扫, 还是改成二维码扫 记录解析该二维码 onLoad(e) {if (e.shareTimeline) { // 以单页面启动-朋友圈分享出的单页面this.shareTimeline e.shareTimeline;let param {certId: e.certId,uid: e.uid,unionid: e.unionid,openid: e.openid,}this.initD…...

【四 (3)数据可视化之 Seaborn 常用图表及代码实现 】

目录 文章导航一、介绍二、安装Seaborn三、导入Seaborn四、设置可以中文显示五、占比类图表1、饼图2、环形图 六、比较排序类1、条形图2、箱线图3、小提琴图 七、趋势类图表1、折线图 八、频率分布类1、直方图 九、关系类图表1、散点图2、成对关系图3、热力图 文章导航 【一 简…...

ASP.NET-Server.HtmlEncode

目录 背景: 1.转义特殊字符&#xff1a; 2.防止跨站脚本攻击&#xff08;XSS&#xff09;&#xff1a; 3.确保输出安全性&#xff1a; 4.保留原始文本形式&#xff1a; 5.与用户输入交互安全&#xff1a; 实例说明: 不用Server.HtmlEncode 效果展示: 用Server.HtmlEnc…...

Linux下进行JavaEE开发-安装JDK、Tomcat、MySQL

目录 JDKTomcatMySQL JDK 安装JDK步骤&#xff1a; 1、创建目录mkdir /opt/jdk 2、将jdk压缩包通过xftp6上传到该目录 3、cd /opt/jdk 4、tar -zxvf jdk-8u151-linux-x64.tar.gz 5、mkdir /usr/local/java 6、mv /opt/jdk/jdk1.8.0_151 /usr/local/java 7、修改环境变量…...

视频和图像编码标准或格式的发展关系

MPEG-2 继承 MPEG-1&#xff1a; MPEG-2 是 MPEG-1 的继任者&#xff0c;用于更高质量和分辨率的视频传输&#xff0c;如 DVD 和数字电视。 MPEG-4 继承 MPEG-2&#xff1a; MPEG-4 在 MPEG-2 的基础上增加了更多的功能和灵活性&#xff0c;适用于多媒体交互和网络传输。 H.2…...

移动云行动:5.5G技术引领数字化转型

刚刚结束的全国两会上&#xff0c;有人大代表建议应尽快发挥5G-A&#xff08;5.5G&#xff09;优势&#xff0c;加快试点城市布局。此前&#xff0c;中国移动已宣布将在300多个城市启动5.5G商用部署。在通信技术的历史长河中&#xff0c;4G改变了我们的生活方式&#xff0c;而5…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...