模型的参数量、计算量、延时等的关系
模型的参数量、计算量、延时等的关系
- 基本概念
- 相互关系
- 代码计算
基本概念
1.参数量:Params
2.计算量:FLOPs,Floating Point Operations,浮点运算次数,用来衡量模型计算复杂度。
3.延时:Latency
4.内存访问成本: MAC,memory access cost,存储模型所需的存储空间。
例如某个模型需要256000个浮点参数定义,转化为bit 乘以32得8192000bit,再除8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。
5.乘加运算次数:MACs,multiply and accumulate operations,通常MACs=2FLOPs
6.每秒浮点运算次数:FLOPS,Floating Point Operations Per Second,是一个衡量硬件速度的指标。
7.每秒万亿次操作:TOPS,Tera Operations Per Second,1TOPS代表处理器每秒钟可进行一万亿次(10^12)操作,是处理器运算能力单位。
注意:区分FLOPs和FLOPS。
相互关系
1.相同 FLOPs 的两个模型,它们的延时可能会差很多。因为 FLOPs 只考虑模型总的计算量,而不考虑内存访问成本 (memory access cost, MAC) 和并行度 (degree of parallelism)。
2.在相同的 FLOPs 下,MAC 大的模型将具有更大的延时。
3.计算量有时候可以忽略,但是MAC却不能忽略。比如Add 或 Concat 的计算量可以忽略不计。
4.对于并行度而言,在相同的 FLOPs 下,具有高并行度的模型可能比另一个具有低并行度的模型快得多。
5.更高的 FLOPS可能 Params 会降低,比如当模型使用共享参数时。
代码计算
参数量Params:
params = sum(p.numel() for p in model.parameters())
print(f"params: {params/(1000 * 1000):.4f} M")
计算量FLOPs:
from thop import profile
flops, _ = profile(model, inputs=(image_tensor))
print("GFLOPs:", flops/(1000*1000*1000))
乘加运算次数MACs:
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(model, (3,224,224), as_strings=True, print_per_layer_stat=True)
打印模型结构:
from torchsummary import summary
summary(model, input_size=(3, 224, 224))
相关文章:
模型的参数量、计算量、延时等的关系
模型的参数量、计算量、延时等的关系 基本概念相互关系代码计算 基本概念 1.参数量:Params 2.计算量:FLOPs,Floating Point Operations,浮点运算次数,用来衡量模型计算复杂度。 3.延时:Latency 4.内存访问…...
Java映射(含源码)
在Java中,“映射”(Map)是一个存储键值对的数据结构,允许你通过键(Key)快速访问值(Value)。映射中的每个键都是唯一的,这意味着每个键都对应一个特定的值。Java提供了几种…...
JMeter 面试题及答案整理,最新面试题
JMeter中如何进行性能测试的规划和设计? 进行JMeter性能测试的规划和设计主要遵循以下几个步骤: 1、确定测试目标: 明确性能测试的目的和目标,比如确定要测试的系统性能指标(如响应时间、吞吐量、并发用户数等&#…...
lua脚本的基础内容
官方地址:http://luajit.org/ 官方wiki地址:http://wiki.luajit.org/Home 推荐书籍: OpenResty 最佳实践:https://moonbingbing.gitbooks.io/openresty-best-practices/content/ lua基础文档:https://www.runoob.com/l…...
MySQL语法分类 DDL(1)
DDL(1)(操作数据库、表) 数据库操作(CRUD) C(Create):创建 //指定字符集创建 create database db_1 character set utf8;//避免重复创建数据库报错可以用一下命令 create database if not exists db_1 character set utf8;R(Retrieve):查询 //查询所…...
苹果Find My App用处多多,产品认准伦茨科技ST17H6x芯片
苹果发布AirTag发布以来,大家都更加注重物品的防丢,苹果的 Find My 就可以查找 iPhone、Mac、AirPods、Apple Watch,如今的Find My已经不单单可以查找苹果的设备,随着第三方设备的加入,将丰富Find My Network的版图。产…...
Lua中文语言编程源码-第三节,更改lualib.h Lua标准库, 使Lua支持中文关键词(与所有的基础库相关)
源码已经更新在CSDN的码库里: git clone https://gitcode.com/funsion/CLua.git 在src文件夹下的lualib.h,是Lua的标准库模块。 Lua标准库一共有有个10个库,base, 基本用不着改,所以没加中文名称。 函数声明宏名英文库名中文库…...
Vue | 使用 ECharts 绘制折线图
目录 一、安装和引入 ECharts 二、使用 ECharts 2.1 新增 div 盒子 2.2 编写画图函数 2.3 完整代码结构 三、各种小问题 3.1 函数调用问题 3.2 数据格式问题 3.3 坐标轴标签问题 3.4 间隔显示标签 参考博客:Vue —— ECharts实现折线图 本文是在上…...
NVENC 视频编码器 API 编程指南 ( 中文转译 )
基于 NVIDIA Kepler™ 和更高版本 GPU 架构的 NVIDIA GPU 包含基于硬件的 H.264/HEVC/AV1 视频编码器(以下简称 NVENC)。NVENC 硬件采用 YUV/RGB 作为输入,并生成符合H.264/HEVC/AV1 标准的视频比特流。可以使用 NVIDIA 视频编解码器 SDK 中提…...
媒体发稿:澳门媒体发稿7个流程
推广平台澳门是一个重要的度假旅游娱乐终点,都是媒体领域热议的话题。对于澳门的媒体发稿营销推广要求,大家提供了一个简单易用的套餐系统软件,帮助大家在澳门媒体上发表推广文章。下面我们就根据7个阶段,详解构建这一套餐推广平台…...
Spring Web MVC入门(2)
学习Spring MVC Postman介绍 在软件工程中, 我们需要具有前后端分离的思想, 以降低耦合性. 但是在测试后端代码时,我们还得写前端代码测试,这是个令人头疼的问题. 那么我们如何测试自己的后端程序呢, 这就用到了一个工具: Postman. 界面介绍: 传参的介绍 1.普通传参, 也就…...
tomcat 实现会话绑定
Tomcat 后端服务器实现 Session ID会话保持 基础架构: 7-6 代理服务器nginx配置 7-3 tomcat 服务器 7-5 同理 测试: 此时刷新,会话ID一直在变,这样不好 如何解决呢? 不好的是确定ip之后,会一直在一台机上…...
Android Studio中快速修改包名
Android Studio中快速修改包名 假设原包名是com.abc.efg, 新包名是com.aaa.bbb 1、点击齿轮图标,把Compact Middle Packages前面的对勾取消,如果没有就忽略此步 2、在左侧项目栏中,选择Android, App-->java-->com,下面可以看…...
solr/ES 分词插件Jcseg设置自定义词库
步骤: 1、找到配置文件jcseg-core/target/classes/jcseg.properties修改配置: 下载地址: https://gitee.com/lionsoul/jcseg#5-如何自定义使用词库 lexicon.path {jar.dir}/../custom-word 设置lexicon路径,我们这个配置可以自定义…...
嵌入式硬件设计(一)|利用 NodeMCU-ESP8266 开发板和继电器结合APP“点灯•blinker”制作Wi-Fi智能开关(附有关硬件详细资料)
概述 本文主要讲述利用 NodeMCU-ESP8266 开发板和继电器通过手机 APP “ 点灯 • Blinker ” 制作一款能够由手机控制的WiFi 智能开关,从而实现智能物联。NodeMCU 是基于 Lua 的开源固件,ESP8266-NodeMCU是一个开源硬件开发板,支持WiFi功能&a…...
CSS扩展选择器
文章目录 1. 并集选择器2. 交集选择器3. 后代选择器4. 子代选择器5. 兄弟选择器5.1. 相邻兄弟选择器5.2. 通用兄弟选择器 6. 属性选择器7. 伪类选择器7.1. 动态伪类7.2. 结构伪类7.3. 否定伪类 8. 伪元素选择器9. Google 改进案例 1. 并集选择器 选中多个选择器对应的元素。一…...
知名Web3投资基金a16z合伙人Jane Lippencott确认出席Hack.Summit() 2024区块链开发者大会
在区块链技术的风起云涌和Web3生态的蓬勃发展中,知名a16z Crypto的合伙人Jane Lippencott已确认出席即将于2024年4月9日至10日在香港数码港举行的Hack.Summit() 2024区块链开发者大会。作为亚洲首次举办的Hack.Summit(),此次大会将为全球区块链开发者及业…...
电脑那个部件坏了或者是哪个软件需要修复来看价钱
电脑维修价格表是多少? 价格取决于计算机的哪个部分损坏或哪个软件需要修复。 由于电脑中的部件非常多,而且会以各种奇怪的方式出现问题,下面我们就来看看具体的充电方法。 电脑维修价格表: 1. 重新安装系统。 安装XP系统通常需…...
GiT: Towards Generalist Vision Transformer through Universal Language Interface
GiT: Towards Generalist Vision Transformer through Universal Language Interface 相关链接:arxiv github 关键字:Generalist Vision Transformer (GiT)、Universal Language Interface、Multi-task Learning、Zero-shot Transfer、Transformer 摘要 …...
纽约时报起诉OpenAI和微软将决定未来LLM的发展
《纽约时报》诉OpenAI和微软案对未来LLM发展的重大影响 案件背景 《纽约时报》(NYT)近期对OpenAI和微软提起诉讼,指控OpenAI未经授权使用其受版权保护的内容来训练其AI模型,包括ChatGPT。NYT声称,OpenAI使用了数百万篇其文章,这…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
