当前位置: 首页 > news >正文

科技云报道:AI大模型背后,竟是惊人的碳排放

科技云报道原创。

自从ChatGPT这样的大型语言模型在全球引起轰动以来,很少有人注意到,训练和运行大型语言模型正在产生惊人的碳排放量。

虽然OpenAI和谷歌都没有说过他们各自产品的计算成本是多少,但据第三方研究人员分析,ChatGPT部分训练消耗了1287兆瓦时,并导致了超过550吨的二氧化碳排放量,这相当于一个人在纽约和旧金山之间往返550次。

事实上,这只是训练时的排放量,当AI大模型运行时还将排出更多的二氧化碳。

加拿大数据中心公司QScale联合创始人Martin Bouchard认为,微软和谷歌为了满足搜索引擎用户日益增长的需求,在搜索中加入ChatGPT这类生成式AI,会导致每次搜索至少增加4到5倍的计算量。

如果还要经常重新训练模型,并添加更多的参数,计算量的规模就完全不同了。

根据国际能源署(International Energy Agency)的数据,数据中心的温室气体排放量已经占到全球温室气体排放量的1%左右。

随着AI大模型和对云计算需求的增长,这一数字预计还会上升。

AI大模型,正在成为碳排放的一个重要来源。

降低AI大模型的碳排放

AI模型的训练和运营过程需要消耗大量能源,但关键问题是,如何知道及测算单个机器学习实验正在产生多少温室气体排放,以及可以减少多少?

目前数据科学家们仍无法简单可靠地获取该领域的测量结果,这也妨碍着进一步制定可行的应对策略。

针对这一问题,谷歌发表了一项研究,详细介绍了最先进的语言模型的能源成本,包括早期和更大版本的LaMDA。

研究结果表明,将高效的模型、处理器和数据中心与清洁能源相结合,可以将机器学习系统的碳足迹减少1000倍。

该团队提出了四种基本方法,可显着减少机器学习工作负载的碳(和能源)足迹,这些方法目前在Google中使用,任何使用Google Cloud服务的人都可以使用。

Google能源和碳足迹减少最佳实践(4Ms)如下:

模型:研究人员表示,选择高效的ML模型架构至关重要,因为它有可能提高ML质量,同时将计算时间缩短一半。
机器:与通用处理器相比,使用专门用于ML训练的处理器和系统可以将性能和能效提高2倍至5倍。
机械化:大多数情况下,本地数据中心更老、更小。因此,新的节能冷却和配电系统的费用无法摊销。
基于云的数据中心是全新的、定制设计的仓库,具有可容纳50000台服务器的能效特性。它们提供异常高效的电源利用率 (PUE)。

因此,在云端而不是在本地进行计算,可以节省1.4-2倍的能源并减少污染。

优化:云允许客户选择具有最清洁能源的区域,从而将总碳足迹减少5到10倍。基于4Ms改进的模型、特定于机器学习的硬件和高效的数据中心,大大抵消了这种负载增加。
谷歌的数据表明,机器学习训练和推理在过去三年中仅占谷歌整体能源使用量的10%至15%,其中每年有35%用于推理,25%用于训练。

为了找到改进的机器学习模型,谷歌采用了神经架构搜索 (NAS)。

每个问题域/搜索空间组合通常只执行一次NAS,然后可以将生成的模型重复用于数百个应用程序,NAS的一次性成本通常被持续使用的减排量所抵消。

研究人员进行了一项研究来训练Transformer模型。

为此,他们在典型的数据中心中使用了Nvidia P100 GPU,其能源组合与全球平均水平相似,而使用TPUv4等新一代ML硬件,性能比P100提升了14倍。

同时,高效的云数据中心比普通数据中心节省1.4倍的能源,从而使总能耗降低83倍。

此外,由低碳能源驱动的数据中心可以将碳排放量再减少9倍,从而在四年内总共减少747倍。

谷歌团队认为,在信息技术领域,制造各种类型和规模的计算设备的生命周期成本,比机器学习的运营成本要高得多。

排放估算的制造成本包括制造所有相关组件(从芯片到数据中心建筑)所排放的嵌入碳。

当然,除了使用4Ms方法,服务提供商和用户还可以采取简单的措施来提高他们的碳足迹绩效,例如:

客户应通过让数据中心提供商报告数据中心效率和每个位置的能源供应清洁度,来分析和减少他们的能源使用和碳足迹。

工程师应该在最环保的数据中心中最快的处理器上训练模型,这些数据中心越来越多地在云上。

机器学习的研究人员应该专注于设计更有效的模型,如:利用稀疏性或包括检索来减少模型。

此外,他们应该报告他们的能源消耗和碳影响。这不仅会鼓励超越模型质量的竞争,而且还可以确保对他们的工作进行正确的核算。

AI助力降低碳排放

尽管AI大模型是碳排放大户,但以AI为代表的前沿科技也正在为降碳减排做出贡献。

百度与咨询机构IDC(International Data Corporation)联合进行的研究显示:与AI相关的技术减碳贡献占比会逐年提升,到2060年将至少达到70%,减碳总量预计超过350亿吨。

以交通行业为例,2020年中国交通行业的碳排放估测量为10.4亿吨,占全国总体排放的9%。

而在驱动交通行业降碳减排过程中,使用以智能信控为主的缓堵型智能交通技术,可以有效提升城市主要道路交叉口的通行效率,千万级人口城市因此每年可至少减碳4.16万吨——这相当于1.4万辆私家车行驶一年的碳排量。

从目前的实践来看,理解和实现减排的关键是对减排的效果进行预测和监控,而AI在节能减排中具有预测排放、监测排放、减少排放三个关键应用。

据《碳中和产业发展白皮书》显示,在预测排放方面,AI 能够根据当前减排工作和需求,预测未来的碳排放量,同时为碳排放定下排放量指引。

在监测排放方面,AI 能实时跟踪碳足迹数据,从采购、生产、销售、运维、物流等全环节收集数据,提升监测准确性。

在减少排放方面,AI 收集各环节数据后,能够以全局视角对各环节工作流程做出优化调整。

事实上,在AI助力碳减排方面,目前国内多个领域已有应用。

在新能源领域,突出问题在于其具有波动性、随机性、间歇性特点。

通过AI技术结合仿真计算,对风光电的不稳定情况做场景预测,如:结合风速、风向、光照强度等自然气象特征对未来的发电量进行合理的预测,向电网输出更精准的发电计划,将新能源的不确定性、不稳定屏蔽在技术层之下。

再比如,水务集团的管辖范围包括原水、制水、供水、排水、污水、节水等。

以居民供水为例,水压过大,所需能耗大,管网漏损率高,可能会引起爆管事件;而水压过小,可能会造成居民用水不便。

为了解决这一问题,水务集团在地下部署硬件传感器监测水压、建设水务大脑,在保证安全、稳定供水的前提下,通过AI技术可以实现智能化调压控制、能耗优化。

不仅如此,AI降碳技术也应用在电厂、园区、数据中心等能源消耗较高的业务场景中,对其生产用电需求进行精确预测和控制,进行耗电设备、碳足迹的优化。

结语

AI技术的进步给人类带来了诸多便利,但也必须在发展中关注环境问题。

未来AI如何实现可持续发展,以及AI如何更好地支撑双碳领域的变革,仍是亟需各行业共同解决的问题。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

相关文章:

科技云报道:AI大模型背后,竟是惊人的碳排放

科技云报道原创。 自从ChatGPT这样的大型语言模型在全球引起轰动以来,很少有人注意到,训练和运行大型语言模型正在产生惊人的碳排放量。 虽然OpenAI和谷歌都没有说过他们各自产品的计算成本是多少,但据第三方研究人员分析,ChatG…...

如何根据实际需求选择合适的三维实景建模方式?

随着实景三维中国建设的推进,对三维实景建模的数字化需求大幅增加。由于三维实景建模具有采集速度快、计算精度高等建模优势,引起了各个行业的高度关注。三维实景建模是一种应用数码相机或者激光扫描仪对现有场景进行多角度环视拍摄,然后利用…...

CENTO OS上的网络安全工具(十八)ClickHouse及编程环境部署

这篇其实去年就写好了,孰知就在12月31日那一天打进决赛圈,一躺,二过年,三休假,四加班,居然到了三个月以后,才有机会将它发出来…… 一年也就四个季度不是,实在是光阴荏苒&#xff0c…...

Java中class文件的格式

常见的class文件格式如下图所示,下面我将对一下格式一一作出解释。 一、magic 该部分主要是对语言类型的规范,只有magic这个部分是CAFEBABE时才能被检测为Java语言,否则则不是。 二、minor version和major version minor version主要表示了…...

C++排序算法

排序算法复习 冒泡排序 链接:https://www.runoob.com/w3cnote/bubble-sort.html 每次循环对比【相邻】两个元素,将最大的元素放到数组最后 void bubbleSort(int* arr, int n){//每次确认一个元素的最终位置,循环n-1次即可确认全部元素的最…...

JAVA后端部署项目三步走

1. JAVA部署项目三步走 1.1 查看 运行的端口 lsof -i:8804 (8804 为端口) 发现端口25111被监听 1.2 杀死进程,终止程序 pid 为进程号 kill -9 pid 1.3 后台运行jar包 nohup java -jar -Xms128M -Xmx256M -XX:MetaspaceSize128M -XX:MaxM…...

php使用zookeeper实现分布式锁

介绍 一、zookeeper和redis实现分布式锁的对比 1、redis 分布式场景应用比较广泛,redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能;zk分布式锁,获取不到锁,注册个监听器即可,不需要不…...

力扣-可回收且低脂的产品

大家好,我是空空star,本篇带大家了解一道超级超级超级简单的力扣sql练习题。 文章目录前言一、题目:1757. 可回收且低脂的产品二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交S…...

代码随想录刷题-数组-二分查找

文章目录写在前面原理习题题目1思路和代码题目-2写在前面 这个专栏是记录我刷代码随想录过程中的随想和总结。每一小节都是根据自己的理解撰写的,文章比较短,主要是为了记录和督促自己。刷完一章后,我会再单独整理一篇文章来总结和分享。 本…...

HCIA复习1

HCIA复习 抽象语言---->编码 编码---->二进制 二进制--->电信号 处理电信号 OSI参考模型----OSI/RM 应用层 表示层 会话层 传输层 端口号:0-65535;1-1023是注明端口 网络层 IP地址 数据链路层 物理层 ARP协议 正向ARP---通过IP地址获取目的MAC地…...

Kotlin中的destructuring解构声明

开发中有时只是想分解一个包含多个字段的对象来初始化几个单独的变量。要实现这一点,可以使用Kotlin的解构声明。本文主要了解:“1、如何使用解构声明这种特性 2、底层是如何实现的 3、如何在你自己的类中实现它1、解构声明的使用解构声明&a…...

Kubernetes Pod 水平自动伸缩(HPA)

Pod 自动扩缩容 之前提到过通过手工执行kubectl scale命令和在Dashboard上操作可以实现Pod的扩缩容,但是这样毕竟需要每次去手工操作一次,而且指不定什么时候业务请求量就很大了,所以如果不能做到自动化的去扩缩容的话,这也是一个…...

钉钉、企业微信和飞书向“钱”看

在急剧变革的时候,不管黑猫白猫,要抓到老鼠才算好猫。如今,各互联网企业早已进入降本增效的新阶段。勒紧裤腰带过日子之下,能不能盈利、商业化空间有多大,就成为各个业务极为重要的考核指标。在各业务板块中&#xff0…...

网上购物网站的设计

技术:Java、JSP等摘要:本文介绍了JSP和JAVA等相关技术,针对网上购物系统的实际需求,设计开发了一个基于JSP的小型电子商务网站也就是网上购物系统,。在设计开发中,采用的是SSH框架(strutsspring…...

【Java学习笔记】8.Java 运算符

Java 运算符 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,Java也提供了一套丰富的运算符来操纵变量。我们可以把运算符分成以下几组: 算术运算符关系运算符位运算符逻辑运算符赋值运算符其他运算符 算术运算符 算术运算符…...

RHCSA-使用命令管理文件(3.6)

硬链接与软链接基本操作: 创建软硬连接的命令:ln 硬链接:ln 源文件(已经存在的文件) 链接文件名(新建) 软连接:ln -s 源文件(已存在的文件) 快捷方式文件名…...

socket聊天室--socket的建立

socket聊天室–socket实现 文章目录 socket聊天室--socket实现socket()bind()listen()accept()connect()发送接收read()函数recv()函数write()函数send()函数close()关闭套接字IP 地址格式转换函数socket() #include <sys/types...

Raft图文详解

Raft图文详解 refer to: Raft lecture (Raft user study) - YouTube Raft PDF Raft算法详解 - 知乎 (zhihu.com) 今天来详细介绍一下Raft协议 Raft是来解决公式问题的协议&#xff0c;那么什么是共识呢&#xff1f; 在分布式系统里面&#xff0c;consensus指的是多个节点对…...

春季出游,学会这些功能,让你旅途更舒心

春意盎然&#xff0c;万物复苏&#xff0c;春天正是旅游观光的好时节&#xff0c;相信不少小伙伴已经做好了出游的准备。想拥有好的心情&#xff0c;除了美食美景&#xff0c;好的出游神器也必不可少&#xff0c;好的出游神器能让我们的旅途更舒心&#xff0c;一起来看看是哪些…...

【华为OD机试真题java、python、c++、jsNode】简单的自动曝光【2022 Q4 100分】(100%通过)

代码请进行一定修改后使用,本代码保证100%通过率。本文章提供java、python、c++、jsNode四种代码 题目描述 一个图像有n个像素点,存储在一个长度为n的数组img里,每个像素点的取值范围[0,255]的正整数。 请你给图像每个像素点值加上一个整数k(可以是负数),得到新图newImg…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...