自然语言处理里预训练模型——BERT
BERT,全称Bidirectional Encoder Representation from Transformers,是google在2018年提出的一个预训练语言模型,它的推出,一举刷新了当年多项NLP任务值的新高。前期我在零、自然语言处理开篇-CSDN博客 的符号向量化一文中简单介绍过其原理,今天我将更加详细的介绍下其工作流程。
零、BERT模型架构
当前的语言模型主要分为两种:
一种是自回归(Auto-Regressive)语言模型,Aotoregressive Lanuage Modeling,自回归语言模型:根据前面(或后面)出现的token来预测当前时刻的token,代表模型有ELMO、GTP(transformer中的decode解码器结构)(等,它一般采用生成类任务做预训练,类似于我们写一篇文章,自回归语言模型更擅长做生成类任务(Natural Language Generating,NLG),例如文章生成等。
另一种是自编码(Auto-Encoding)语言模型,Autoencoding Language Modeling,自编码语言模型:通过上下文信息来预测当前被mask的token,代表有BERT、Word2Vec(CBOW)等.它使用MLM做预训练任务,自编码预训模型往往更擅长做判别类任务,或者叫做自然语言理解(Natural Language Understanding,NLU)任务,例如文本分类,NER等。训练过程类似于做完形填空,下面会介绍到。
BERT模型采用的是transformer里的encode编码器的结构,它的模型总体结构如下:

每一个transformer encode结构如下:

一、BERT的训练流程
1.0 BERT的输入
BERT的输入是一个长度为n的输入序列(n表示词组个数,token数),一般是512,通常包含下面三个部分:
(1)Token Embeddings:采用wordpiece对文本进行切割成一个个子词,经过embedding后每一个子词输出为768维的向量 (1, n, 768)。此层的tokenization使用的方法是WordPiece tokenization,将词转换为one hot编码,再经过embedding层,转换成768维向量。
(2)Segment Embeddings:切割句子用的(1, n, 768),相比transformer,这个是新增的。
(3)Position Embeddings:用于标记词在句子中的位置,(1, n, 768),使用的是cos和sin的固定位置标记法。
整个输入是一个1*512*768的张量。

对于输入的句子,将进行以下两个预训练任务。
1.1 BERT主要包含两个训练任务
1、 随机掩码训练任务:
(1)随机地将一句话里的某个单词替换成<mask>,输入到N层的transformer encode编码器里。
(2)将<mask>的隐层状态输入到softmax中进行预测,输出预测的单词结果。
(3)将预测得到的单词结果和原始数据中单词计算交叉熵,更新参数。

通过上面3步,可以学习到“研究生”这个单词单独的语义,又能学习到它的上下文的语义关系。是不是很像完形填空~。
2、下一个句子预测任务
这个任务主要学习句子间的关系,它的训练过程如下:
(1)将数据集中连续两个句子A和B进行拼接(负例的构建就是随机组合句子就行)。
(2)在拼接的句子前端加入<cls>标签,代表句子是否连续,在两个句子间加入<seg>标签,输入到N层的transformer encode里。
(3)将<cls>的隐层状态输入softmax进行预测。
(4)将预测结果和实际结果计算交叉熵,更新参数。

二、BERT应用时的微调方法
BERT微调时,采用少量的标注数据,进行少量轮次的迭代,即可将模型微调为一个特定领域的任务模型,比如句子相似性匹配,句子分类,问答对匹配、序列标注等。

相关文章:
自然语言处理里预训练模型——BERT
BERT,全称Bidirectional Encoder Representation from Transformers,是google在2018年提出的一个预训练语言模型,它的推出,一举刷新了当年多项NLP任务值的新高。前期我在零、自然语言处理开篇-CSDN博客 的符号向量化一文中简单介绍…...
2024年信息技术与计算机工程国际学术会议(ICITCEI 2024)
2024年信息技术与计算机工程国际学术会议(ICITCEI 2024) 2024 International Conference on Information Technology and Computer Engineering ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 大会主题: 信息系统和技术…...
渗透测试修复笔记 - 02 Docker Remote API漏洞
需要保持 Docker 服务运行并且不希望影响其他使用 Docker 部署的服务,同时需要禁止外网访问特定的 Docker API 端口(2375):通过一下命令来看漏洞 docker -H tcp://ip地址:2375 images修改Docker配置以限制访问 修改daemon.json配…...
Spring(创建对象的方式3个)
3、Spring IOC创建对象方式一: 01、使用无参构造方法 //id:唯一标识 class:当前创建的对象的全局限定名 <bean id"us1" class"com.msb.pojo.User"/> 02、使用有参构造 <bean id"us2&…...
【GPT-SOVITS-02】GPT模块解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...
6个选品建议,改善你的亚马逊现状。
一、市场热点与需求调研 深入研究当前市场趋势,了解消费者需求的变化。使用亚马逊的销售数据、评价、问答等功能,以及第三方市场研究工具,比如店雷达,分析潜在热销产品的特点。注意季节性需求,提前布局相关选品&#…...
SQL中的SYSDATE函数
前言 在SQL语言中,SYSDATE 是一个非常实用且常见的系统内置函数,尤其在Oracle和MySQL数据库中广泛使用。它主要用来获取服务器当前的日期和时间,这对于进行实时数据记录、审计跟踪、有效期计算等场景特别有用。本文将详细解析SYSDATE函数的使…...
Rust的async和await支持多线程运行吗?
Rust的async和await的异步机制并不是仅在单线程下实现的,它们可以在多线程环境中工作,从而利用多核CPU的并行计算优势。然而,异步编程的主要目标之一是避免不必要的线程切换开销,因此,在单线程上下文中,asy…...
P2676 [USACO07DEC] Bookshelf B
[USACO07DEC] Bookshelf B 题目描述 Farmer John 最近为奶牛们的图书馆添置了一个巨大的书架,尽管它是如此的大,但它还是几乎瞬间就被各种各样的书塞满了。现在,只有书架的顶上还留有一点空间。 所有 N ( 1 ≤ N ≤ 20 , 000 ) N(1 \le N…...
【数学】第十三届蓝桥杯省赛C++ A组/研究生组《爬树的甲壳虫》(C++)
【题目描述】 有一只甲壳虫想要爬上一棵高度为 n 的树,它一开始位于树根,高度为 0,当它尝试从高度 i−1 爬到高度为 i 的位置时有 Pi 的概率会掉回树根,求它从树根爬到树顶时,经过的时间的期望值是多少。 【输入格式…...
Java毕业设计 基于springboot vue招聘网站 招聘系统
Java毕业设计 基于springboot vue招聘网站 招聘系统 springboot vue招聘网站 招聘系统 功能介绍 用户:登录 个人信息 简历信息 查看招聘信息 企业:登录 企业信息管理 发布招聘信息 职位招聘信息管理 简历信息管理 管理员:注册 登录 管理员…...
Leetcode 1. 两数之和
心路历程: 很简单的题,双层暴力就可以,用双指针的话快一点。暴力时间复杂度O( n 2 n^2 n2),双指针时间复杂度O(nlogn) O(n) O(n) O(nlogn)。 注意的点: 1、题目需要返回原数组的索引,所以排序后还需要…...
【elasticsearch实战】从零开始设计全站搜索引擎
业务需求 最近需要一个全站搜索的功能,我们的站点的特点是数据多源,即有我们本地数据库,也包含了第三方数据源,我们的数据类型除了网页,还包括了各种类型的文档,例如:doc、pdf、excel、ppt等格…...
基于tcp协议的网络通信(基础echo版.多进程版,多线程版,线程池版),telnet命令
目录 基础版 思路 辅助函数 服务端 代码 运行情况 -- telnet ip 端口号 传输的数据为什么没有转换格式 客户端 思路 代码 多进程版 引入 问题 解决 注意点 服务端 代码 运行情况 进程池版(简单介绍) 多线程版 引入 问题解决 注意点 服务端 代码 …...
Ubuntu20系统安装完后没有WIFI
Ubuntu20系统安装完后没有WIFI 查看后发现是缺少网卡,经过查询之后,发现是HRex39/rtl8852be 然后查询了Kernel版本 Check the Kernel Version in Linux $ uname -srm Linux 5.15.0-67-generic x86_64然后进行下载安装 Build(for kernel < 5.18) …...
计算机视觉——目标检测(R-CNN、Fast R-CNN、Faster R-CNN )
前言、相关知识 1.闭集和开集 开集:识别训练集不存在的样本类别。闭集:识别训练集已知的样本类别。 2.多模态信息融合 文本和图像,文本的语义信息映射成词向量,形成词典,嵌入到n维空间。 图片内容信息提取特征&…...
log4j2.xml配置文件不生效
问题 使用springboot配置log4j2,添加了依赖并排除默认的logging依赖,配置了log4j2.xml文件,放在scr目录下,运行可以在控制台输出日志,但不受配置文件影响 解决 配置文件log4j2.xml放在resources目录下生效...
QT信号与槽实现方式
1、第一种实现方式 在QT开发工具UI界面先拖入按钮,然后鼠标右键拖入按钮,点击选中槽,在页面选着需要的信号,然后OK,随即将会跳转到类的.cpp文件,(这种UI代码结合的方式,会自动去绑定…...
Yarn面试重点
文章目录 1. 简述Yarn集群的架构2. Yarn 的任务提交流程是怎样的?3. yarn的资源调度的三种模型 1. 简述Yarn集群的架构 YARN(Yet Another Resource Negotiator)是Hadoop 2.x引入的资源管理器,用于管理Hadoop集群中的资源和作业调…...
高速口光口通信
1.通过transceiver ip 设置好硬件连接配置 2.open example 用自己的模块替换掉tx和rx数据模块 3.大小端问题—— 4.配置gt收发器的rx的k码时候需要设置anybyte便于高效率接收。 5.开发数据产生模块和接收校验模块都需要使用TXUSRCLK2,但是TXUSRCLK线速度/内部数据位宽。——…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
在MobaXterm 打开图形工具firefox
目录 1.安装 X 服务器软件 2.服务器端配置 3.客户端配置 4.安装并打开 Firefox 1.安装 X 服务器软件 Centos系统 # CentOS/RHEL 7 及之前(YUM) sudo yum install xorg-x11-server-Xorg xorg-x11-xinit xorg-x11-utils mesa-libEGL mesa-libGL mesa-…...
