当前位置: 首页 > news >正文

汇总全网免费API,持续更新(新闻api、每日一言api、音乐。。。)

Public&FreeAPI

网址:apis.whyta.cn (推荐)

在这里插入图片描述

UomgAPI

网址:https://api.uomg.com
在这里插入图片描述

教书先生

网址:https://api.oioweb.cn/
在这里插入图片描述

山海API

https://api.shserve.cn/
在这里插入图片描述

云析API铺

https://api.a20safe.com/
在这里插入图片描述

韩小韩API

网址:https://api.vvhan.com
在这里插入图片描述

JSON API免费接口

各种提供JSON格式数据返回服务网站的API接口

http://www.bejson.com/knownjson/webInterface/
在这里插入图片描述

接口大全

网址:https://www.free-api.com
在这里插入图片描述

阿里云api市场

网址:https://market.aliyun.com/data
在这里插入图片描述

总结

如果需要更稳定的api,推荐大家使用付费api

欢迎大家提交免费 api 我们共同维护这篇文章

相关文章:

汇总全网免费API,持续更新(新闻api、每日一言api、音乐。。。)

Public&FreeAPI 网址:apis.whyta.cn (推荐) UomgAPI 网址:https://api.uomg.com 教书先生 网址:https://api.oioweb.cn/ 山海API https://api.shserve.cn/ 云析API铺 https://api.a20safe.com/ 韩小韩…...

Android SystemServer进程解析

SystemServer进程在android系统中占了举足轻重的地位,系统的所有服务和SystemUI都是由它启动。 一、SystemServer进程主函数流程 1、主函数三部曲 //frameworks/base/services/java/com/android/server/SystemServer.java /** * The main entry point from zy…...

Github主页设置贪吃蛇详细教程

先看最终实现结果: 有条贪吃蛇放在主页还是蛮酷的哈哈哈。接下来我来讲一讲怎么在Github主页添加一条贪吃蛇。 首先要修改自己的Github的主页,我们得有一个特殊的仓库——这个仓库必须与你的Github用户名保持一致,并且需要公开&#xff0c…...

二、实现fastdfs文件上传与延迟删除功能的Spring Boot项目

如何在Spring Boot项目中集成FastDFS实现文件上传功能,并添加支持延迟删除功能的实现。 一、Spring Boot 中集成 fastdfs 使用 1、文件上传功能实现 首先,让我们看一下如何实现文件上传功能的接口方法: RestController public class File…...

Android FrameWork 学习路线

目录 前言 学习路线: 1.基础知识 2、AOSP 源码学习 3. AOSP 源码编译系统 4. Hal与硬件服务 5.基础组件 6. Binder 7. 系统启动过程分析 8. 应用层框架​编辑 9. 显示系统 10. Android 输入系统 11. 系统应用 前言 Android Framework 涉及的行业相当广…...

前端开发者如何打造自己的生态以及ip

作为独立开发者,在公司的岗位上面,经常面对的是页面,但我们不能局限页面,页面是切入点。 1在需求页面的过程中,我们会接触ui,原型,软件,需求, 2在接口对接的过程中&#…...

C语言实现一个两个数加减乘除的答题代码(含文件保存),用户增加,题目增加,题目测试,题目答题等等

目录 1、这是我大一自己写的小代码,现在翻到了就分享出来,高手勿喷。 2、项目运行 3、获取完整源码网址 1、这是我大一自己写的小代码,现在翻到了就分享出来,高手勿喷。 2、项目运行 (1)测试模块 每次…...

YOLOv9改进策略:注意力机制 | 用于微小目标检测的上下文增强和特征细化网络ContextAggregation,助力小目标检测,暴力涨点

💡💡💡本文改进内容:用于微小目标检测的上下文增强和特征细化网络ContextAggregation,助力小目标检测 yolov9-c-ContextAggregation summary: 971 layers, 51002153 parameters, 51002121 gradients, 238.9 GFLOPs 改…...

基于单片机的老人防丢系统设计

目 录 摘 要 I Abstract II 引 言 3 1 系统总体架构 6 1.1方案设计与选择 6 1.2 系统架构设计 6 1.3 系统器件选择 7 2 系统硬件设计 9 2.1 单片机外围电路设计 9 2.2 LCD1602液晶显示电路设计 12 2.3 短信模块电路设计 14 2.4 GPS模块电路设计 14 2.5 电源与按键控制电路设计…...

从海外开发者大会的亲身体悟聊起,谈谈 AI 与开发者关系的重构 | 编码人声

本期「编码人声」节目中,我们聚焦于「AI 与开发者关系的重构」这一主题,从嘉宾参加海外开发者大会的亲身体验开始分享,聊一聊 AI 技术如何影响开发者社区和生态,以及开发者如何在这一变革中找到新的位置。 我们邀请了开发者社区与…...

HTML_CSS练习:HTML注释

一、代码示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>HTML注释</title> </head> <body><marquee loop"1">马龙强<!--下面的输入框是可以滚动的&#x…...

面试官问我Java异步编程用过吗?我直接说了6种方式!

文章目录 线程池 Runnable/Callable线程池 FutureCompletableFuture线程池 Async注解Spring 事件创建事件事件发布者事件监听器调用事件 消息队列生产者消费者 在实际开发中有些耗时操作&#xff0c;或者对主流程不是那么重要的逻辑&#xff0c;可以通过异步的方式去执行&am…...

一维坐标的移动(bfs)

在一个长度为n的坐标轴上&#xff0c;小S想从A点移动B点。 他的移动规则如下&#xff1a; 向前一步&#xff0c;坐标增加1。 向后一步&#xff0c;坐标减少1。 跳跃一步&#xff0c;使得坐标乘2。 小S不能移动到坐标小于0或大于n的位置。 小S想知道从A点移动到B点的最少步数是多…...

面试题 整理

第1题&#xff1a;常见数据类型大小 这边以64位计算机系统&#xff0c;环境而言。 类型 存储大小 值范围 char 1 字节 -128 到 127 或 0 到 255 unsigned char 1 字节 0 到 255 signed char 1 字节 -128 到 127 int 4 字节 -32,768 到 32,767 或 -2,147,483,648…...

苍穹外卖-day08:导入地址簿功能代码(单表crud)、用户下单(业务逻辑)、订单支付(业务逻辑,cpolar软件)

苍穹外卖-day08 课程内容 导入地址簿功能代码用户下单订单支付 功能实现&#xff1a;用户下单、订单支付 用户下单效果图&#xff1a; 订单支付效果图&#xff1a; 1. 导入地址簿功能代码&#xff08;单表crud&#xff09; 1.1 需求分析和设计 1.1.1 产品原型&#xff08…...

Java面试相关问题

一.MySql篇 1优化相关问题 1.1.MySql中如何定位慢查询&#xff1f; 慢查询的概念&#xff1a;在MySQL中&#xff0c;慢查询是指执行时间超过一定阈值的SQL语句。这个阈值是由long_query_time参数设定的&#xff0c;它的默认值是10秒1。也就是说&#xff0c;如果一条SQL语句的执…...

Linux Shell中的循环控制语句

Linux Shell中的循环控制语句 在编写Shell脚本时&#xff0c;循环是一种常用的控制结构&#xff0c;用于重复执行一系列命令。在Shell中&#xff0c;主要有三种循环控制语句&#xff1a;for循环&#xff0c;while循环&#xff0c;和until循环。 1. For循环 for循环是最常见的…...

proto3语言指南

Language Guide (proto3) 本指南介绍了如何使用 protocol buffer 语言来构建protocol buffer数据,包括.proto文件语法以及如何从.proto 文件生成数据访问类。它涵盖了proto3 版本的协议缓冲语言:有关proto2语法的信息,请参阅proto2语言指南。 文章目录 Language Guide (pro…...

解决后端传给前端的日期问题

解决方式&#xff1a; 1). 方式一 在属性上加上注解&#xff0c;对日期进行格式化 但这种方式&#xff0c;需要在每个时间属性上都要加上该注解&#xff0c;使用较麻烦&#xff0c;不能全局处理。 2). 方式二&#xff08;推荐 ) 在WebMvcConfiguration中扩展SpringMVC的消息转…...

MySQL中的索引失效情况介绍

MySQL中的索引是提高查询性能的重要工具。然而&#xff0c;在某些情况下&#xff0c;索引可能无法发挥作用&#xff0c;甚至导致查询性能下降。在本教程中&#xff0c;我们将探讨MySQL中常见的索引失效情况&#xff0c;以及它们的特点和简单的例子。 1. **索引失效的情况** …...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...