快速幂----快速求解底数的n次幂
目录
一.快速幂
1.问题的引入
2.快速幂的介绍
3.核心思想
4.代码实现
2.猴子碰撞的方法数
1.题目描述
2.问题分析
3.代码实现
一.快速幂
1.问题的引入
问题:求解num的n次幂,结果需要求余
+7
对于这个问题我们可能就是直接调用函数pow(a,b)来直接求解a的b次幂问题,但是如果求解的结果很大,超过的double的数值范围,我们要求对最终的结果求余+7,我们如果直接调用pow()函数的话,求解出来的数已经超出了double的最大范围,根本无法求出,这个时候我们是否可以考虑在求解的过程中每一次的结果都求余
+7,而不是只在最终的结果求余
+7这样最终的结果肯定是小于
+7,一定不会超出最大的范围.
2.快速幂的介绍
快速幂:快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N),与朴素的O(N)相比效率有了极大的提高。
3.核心思想
例如计算,10的二进制为1010,相当于求解
次方
=3*3*3*3*3*3*3*3*3*3
=(3*3)*(3*3*3*3*3*3*3*3)
=*
相当于我们每次对10的二进制的每一个位置求权(如果是二进制这个位是1),则乘以当前的叠加的数,
例如进行求余的步骤 :
定义变量ans保存的结果 1010位10的二进制表达方式
1010的第一位为0,这个时候num=num*num=; 二进制形式为:
1010的第二位为0,这个时候求权为1,ans=ans*num= num=num*num=
;二进制形式为:
1010的第三位为0,这个时候num=num*num=; 二进制形式为:
1010的第四位为1,这个时候求权为1,ans=ans*num=*
num=num*num=
;
4.代码实现
1.求余+7的版本,返回数据类型为int的结果
public int quickPow(long num,int n){long ans=1;long mod=1000000007;while(n!=0){if((n&1)==1)ans=(ans*num)%mod;num = num * num % mod;n>>=1;}return (int)(ans%mod);}
2.不求余的版本,返回数据类型为long的结果
public long quickPow(long num,int n){long ans=1;while(n!=0){if((n&1)==1)ans=ans*num;num = num * num;n>>=1;}return ans;}
2.猴子碰撞的方法数
1.题目描述
现在有一个正凸多边形,其上共有
n个顶点。顶点按顺时针方向从0到n - 1依次编号。每个顶点上 正好有一只猴子 。下图中是一个 6 个顶点的凸多边形。
每个猴子同时移动到相邻的顶点。顶点
i的相邻顶点可以是:
- 顺时针方向的顶点
(i + 1) % n,或- 逆时针方向的顶点
(i - 1 + n) % n。如果移动后至少有两个猴子位于同一顶点,则会发生 碰撞 。
返回猴子至少发生 一次碰撞 的移动方法数。由于答案可能非常大,请返回对
109+7取余后的结果。注意,每只猴子只能移动一次。
力扣: 力扣
2.问题分析
正难则反,题目问的是至少发生一次碰撞的移动次数,我们不妨把问题转换为求解猴子一次都不碰撞的次数,猴子一共有2的n次幂中跳跃的方式,求中有两种是一次都不碰撞的,一种是猴子全部顺时针进行跳跃,一种是猴子逆时针进行跳跃,所以猴子至少发生一次碰撞的次数=猴子总共的移动次数-2
3.代码实现
public int monkeyMove(int n) {long ans=1,a=2;long mod=1000000007;while(n!=0){if((n&1)==1)ans=(ans*a)%mod;a = a * a % mod;n>>=1;}return (int)((ans+mod-2)%mod);}
相关文章:
快速幂----快速求解底数的n次幂
目录 一.快速幂 1.问题的引入 2.快速幂的介绍 3.核心思想 4.代码实现 2.猴子碰撞的方法数 1.题目描述 2.问题分析 3.代码实现 一.快速幂 1.问题的引入 问题:求解num的n次幂,结果需要求余7 对于这个问题我们可能就是直接调用函数pow(a,b)来直接求解a的b次幂问题,但是如果…...
【FMCW 04】测角-Angle FFT
在之前的文章中,我们已经详尽讨论过FMCW雷达测距和测速的原理,现在来讲最后一块内容,测角。测角对于硬件设备具有要求,即要求雷达具有多发多收结构,从而形成多个空间信道(channel),我…...
Linux操作系统学习(线程同步)
文章目录线程同步条件变量生产者与消费者模型信号量环形队列应用生产者消费者模型线程同步 现实生活中我们经常会遇到同一个资源多个人都想使用的问题,例如游乐园过山车排队,玩完的游客还想再玩,最好的办法就是玩完的游客想再玩就去重新排…...
了解动态规划算法:原理、实现和优化指南
动态规划 详细介绍例子斐波那契数列最长回文子串优化指南优化思路斐波那契数列优化最长回文子串优化详细介绍 动态规划(Dynamic Programming,简称 DP)是一种通过将原问题拆分成子问题并分别求解这些子问题来解决复杂问题的算法思想。 它通常用于求解优化问题,它的核心思想…...
《NFL橄榄球》:明尼苏达维京人·橄榄1号位
明尼苏达维京人(英语:Minnesota Vikings)是一支职业美式足球球队,位于明尼苏达州的明尼阿波利斯。他们现时在国家橄榄球联合会北区参与国家美式足球联盟比赛。该球队本为美国美式足球联盟(AFL)的球队。但是…...
sheng的学习笔记-Actuator健康监控
前言在微服务系统里,对微服务程序的运行状况的跟踪和监控是必不可少的;例如GPE,TelegrafinfluxDB都提供了微服务体系监控的方案, ZIPKIN, Skywalking都提供了微服务云体系的APM的方案; 这些解决方案功能全面…...
初次使用ESP32-CAM记录
模块的配置和图片 摄像头:8225N V2.0 171026 模块esp-32s 参考资料:https://docs.ai-thinker.com/esp32 配置环境 参考:https://blog.csdn.net/weixin_43794311/article/details/128622558 简单使用需要注意的地方 基本的环境配置和串口…...
华为OD机试真题Python实现【最长连续交替方波信号】真题+解题思路+代码(20222023)
最长连续交替方波信号 题目 输入一串方波信号,求取最长的完全连续交替方波信号,并将其输出, 如果有相同长度的交替方波信号,输出任一即可,方波信号高位用1标识,低位用0标识 如图: 说明: 一个完整的信号一定以0开始然后以0结尾, 即 010 是一个完整的信号,但101,101…...
【操作系统原理实验】页面替换策略模拟实现
选择一种高级语言如C/C等,编写一个页面替换算法的模拟实现程序。1) 设计内存管理相关数据结构;2) 随机生成一个页面请求序列;3) 设置内存管理模拟的关键参数;4) 实现该页面置换算法;5) 模拟实现给定配置请求序列的换页…...
Java中解析XML文件
1 在Java中解析XML文件共有四种方式 A、DOM方式解析XML数据 树结构,有助于更好地理解、掌握,代码易于编写,在解析过程中树结构是保存在内存中,方便修改 B、SAX方式解析 采用事件驱动模式,对内存消耗比较小࿰…...
二点回调测买 源码
如图所示,两点回调测买点的效果图,这是我们常见的一种预测买点计算方法。 现将源码公布如下: DRAWKLINE(H,O,L,C); N:13; A1:REF(HIGH,N)HHV(HIGH,2*N1); B1:FILTER(A1,N); C1:BACKSET(B1,N1); D1:FILTER(C1,N); A2:REF(LOW,N)LLV(LOW,2*N1…...
钉钉端H5开发调试怎么搞
H5开发本地调试教程 作为一名前端开发,大家平时工作中或多或少都有接触或需要开发H5页面的场景,在开发过程中,如何像PC端页面一样有有丝滑的体验呢? 不同的情况需要在不同的端调试更方便有效: 1. 在画UI的时候,更适合在PC端调试,更改代码或者直接在浏览器调试,都是实…...
Mysql Server原理简介
Mysql客户端包括JDBC、 Navicat、sqlyog,只是为了和mysql server建立连接,向mysql server提交sql语句。mysql server组件第一部分叫连接器主要承担的功能叫管理连接和验证权限,每次在进行数据库访问的时候,必然要输入用户名和密码…...
23种设计模式-外观模式
外观模式是一种结构型设计模式,它提供了一个统一的接口,用来访问子系统中的一群接口。外观模式定义了一个高层接口,使得客户端可以更加方便地访问子系统的功能。在这篇博客中,我们将讨论如何使用Java实现外观模式,并通…...
使用 Vulkan VkImage 作为 CUDA cuArray
使用 Vulkan VkImage 作为 CUDA cuArray【问题标题】:Use Vulkan VkImage as a CUDA cuArray使用 Vulkan VkImage 作为 CUDA cuArray【发布时间】:2019-08-20 20:01:10【问题描述】:将 Vulkan VkImage 用作 CUDA cuArray 的正确方法是什么&am…...
电商API接口-电商OMS不可或缺的一块 调用代码展示
电商后台管理系统关键的一环就是实现电商平台数据的抓取,以及上下架商品、订单修改等功能的调用。这里就需要调用电商API接口。接入电商API接口后再根据自我的需求进行功能再开发,实现业务上的数字化管理。其中订单管理模板上需要用到如下API:seller_ord…...
Solaris ZFS文件系统rpool扩容
ZFS文件系统简介 Solaris10默认的文件系统是ufs(Unix Filesystem),当然也可以选装zfs;Solaris11默认的文件系统是zfs(Zettabyte Filesystem)。 ZFS文件系统的英文名称为Zettabyte File System,也叫动态文件…...
模式识别 —— 第二章 参数估计
模式识别 —— 第二章 参数估计 文章目录模式识别 —— 第二章 参数估计最大似然估计(MLE)最大后验概率估计(MAP)贝叶斯估计最大似然估计(MLE) 在语言上: 似然(likelihood…...
判断4位回文数-课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)
实例1:判断4位回文数 所谓回文数,就是各位数字从高位到低位正序排列和从低位到高位逆序排列都是同一数值的数,例如,数字1221按正序和逆序排列都为1221,因此1221就是一个回文数;而1234的各位按倒序排列是43…...
【NLP】Word2Vec 介绍
Word2Vec 是一种非常流行的自然语言处理技术,它将每个单词表示为高维向量,并且通过向量之间的相似度来表示单词之间的语义关系。 1 One-Hot 编码🍂 在自然语言处理任务中,我们需要将文本转换为计算机可以理解的形式,即…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
