【Week Y2】使用自己的数据集训练YOLO-v5s
Y2-使用自己的数据集训练YOLO-v5s
- 零、遇到的问题汇总
- (1)遇到git的`import error`
- (2)`Error:Dataset not found`
- (3)`Error:删除中文后,训练图片路径不存在`
- 一、.xml文件里保存的是什么
- 二、准备好自己的数据
- 三、创建split_train_val.py 文件,运行并生成 train.txt、test.txt、val.txt
- (1)在yolov5-master工程内,新建一个.py文件,并命名为`split_train_val.py`:
- (2)将以下代码写入该文件,设置自己的`.xml`和`.txt`文件路径:
- (3)然后执行该文件,就得到下面的结果:
- (4)创建`voc_label.py`,填充图片路径
- 四、创建 `fruit.yaml `文件
- 五、开始用自己的数据集训练模型
- (1) 输入训练指令
- (2)查看训练结果
本文使用水果数据集、CPU进行训练,包含200张图像,水果类别分为4类,
Banana、Snake fruit、Dragon fruit和Pineapple
。
本文先列出执行过程中遇到的问题以及解决办法,再将执行步骤一一说明,给出的代码是我修改过后的最终的代码。
需要注意的是:!!!文件路径不要包含中文!!!
零、遇到的问题汇总
(1)遇到git的import error
参考【这里】解决:
找到提示报错的路径d:\jupyter notebook\365-DL\.venv\Lib\site-packages\git\cmd.py
,然后在该文件中添加一行:
os.environ['GIT_PYTHON_REFRESH'] = 'quiet'
(2)Error:Dataset not found
路径中含有中文,删除中文。
(3)Error:删除中文后,训练图片路径不存在
将split_train_val.py
和voc_label.py
生成的所有文件删除,重新生成。【注意检查路径】
如下所示:
【注意abs_path的路径,本文的图像路径为D:\jupyter notebook\365-DL\YOLO\Y2\yolov5-master\Y2-fruit_data\images\*.png
,而abs_path=D:\jupyter notebook\365-DL\YOLO\Y2\yolov5-master
】
一、.xml文件里保存的是什么
在annotations/
文件夹里,打开任意一个.xml
文件,这里打开fruit0.xml
,文件内容如下:
注意每个标签组内的信息,后续voc_label.py
文件会提取这些信息。
<annotation><folder>images</folder><filename>fruit0.png</filename><size><width>400</width><height>300</height><depth>3</depth></size><segmented>0</segmented><object><name>pineapple</name><pose>Unspecified</pose><truncated>0</truncated><occluded>0</occluded><difficult>0</difficult><bndbox><xmin>38</xmin><ymin>82</ymin><xmax>271</xmax><ymax>227</ymax></bndbox></object><object><name>snake fruit</name><pose>Unspecified</pose><truncated>0</truncated><occluded>0</occluded><difficult>0</difficult><bndbox><xmin>244</xmin><ymin>174</ymin><xmax>280</xmax><ymax>207</ymax></bndbox></object><object><name>dragon fruit</name><pose>Unspecified</pose><truncated>0</truncated><occluded>0</occluded><difficult>0</difficult><bndbox><xmin>254</xmin><ymin>228</ymin><xmax>351</xmax><ymax>300</ymax></bndbox></object>
</annotation>
二、准备好自己的数据
本次使用水果数据集,数据集包含200张图片,每张图片包含4种不同类别的水果:Banana、Snake fruit、Dragon fruit和Pineapple
。
三、创建split_train_val.py 文件,运行并生成 train.txt、test.txt、val.txt
执行split_train_val.py
前的文件结构:
(1)在yolov5-master工程内,新建一个.py文件,并命名为split_train_val.py
:
(2)将以下代码写入该文件,设置自己的.xml
和.txt
文件路径:
# 导入必要的库
# 导入必要的库
import os
import random
import argparse# 创建一个参数解析器
parser = argparse.ArgumentParser()# 添加命令行参数,用于指定XML文件的路径,默认为“Annotations”文件夹
parser.add_argument('--xml_path', default='D:/jupyter notebook/365-DL/YOLO/Y2/yolov5-master/Y2-fruit_data/annotations/', type=str, help='input xml label path')# 添加命令行参数,用于指定txt标签文件的路径,默认为“ImageSets/Main”文件夹
parser.add_argument('--txt_path', default='D:/jupyter notebook/365-DL/YOLO/Y2/yolov5-master/Y2-fruit_data/ImageSets/Main', type=str, help='output txt label path')# 解析命令行参数
opt = parser.parse_args()# 定义训练验证和测试集的划分比例
trainval_percent = 1.0 # 使用全部数据
train_percent = 0.9 # 训练集占验证集的90%# 设置xml文件的路径,并根据命令行参数指定
xmlfilepath = opt.xml_path
print("xmlfilepath: ", xmlfilepath)# 设置txt文件的路径,并根据命令行参数指定
txtfilepath = opt.txt_path# 获取xml文件夹中的所有xml文件列表
total_xml = os.listdir(xmlfilepath)# 如果输出txt标签文件的文件夹不存在,创建它
if not os.path.exists(txtfilepath):os.makedirs(txtfilepath)# 获取xml文件的总数
num = len(total_xml)# 创建一个包含所有xml文件索引的列表
list_index = range(num)# 计算训练验证集的数量
tv = int(num*trainval_percent)# 计算训练集的数量
tr = int(num*train_percent)# 从所有xml文件索引中随机选择出训练验证集的索引
trainval = random.sample(list_index, tv)# 从训练验证集的索引中随机选择出训练集的索引
train = random.sample(list_index, tr)# 打开要写入的训练验证集、测试集、训练集、验证集的txt文件
file_trainval = open(txtfilepath + '/trainval.txt', 'w')
file_test = open(txtfilepath + '/test.txt', 'w')
file_train = open(txtfilepath + '/train.txt', 'w')
file_val = open(txtfilepath + '/val.txt', 'w')# 遍历所有xml文件的索引
for i in list_index:name = total_xml[i][:-4] + '\n' # 获取所有文件的名称(去掉后缀.xml),并添加换行符# 如果该索引在训练验证集中, 写入训练验证集txt文件,否则写入测试集txt文件if i in trainval: file_trainval.write(name) # if i in train: # 如果该索引在训练集中, 写入训练集txt文件,否则写入验证集txt文件file_train.write(name)else:file_val.write(name)else:file_test.write(name)# 关闭所有打开的文件
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
(3)然后执行该文件,就得到下面的结果:
打开任意一个文件,查看内容:【此处打开val.txt
,文件内保存的是个文件名】
(4)创建voc_label.py
,填充图片路径
voc_label.py
代码如下:
# 导入必要的库
import xml.etree.ElementTree as ET
import os
from os import getcwd
# 定义数据集的名称
sets = ['train', 'val', 'test']
# 根据所用数据集,填写类别名称,本文使用水果数据集,包含4类,分别如下:
classes = ["banana", "snake fruit", "dragon fruit", "pineapple"]
# 获取当前工作目录的绝对路径
abs_path = os.getcwd() # abs_path: D:\jupyter notebook\365-DL\YOLO\Y2\yolov5-master
print("abs_path: ", abs_path)
# 定义一个函数,将边界框的坐标绝对值转换为相对于图像大小的比例
def convert(size, box):dw = 1./(size[0]) # 计算图像宽度的倒数dh = 1./(size[1]) # 计算图像高度的倒数x = (box[0] + box[1])/ 2.0 - 1 # 计算中心点的x坐标y = (box[2] + box[3])/ 2.0 - 1 # 计算中心点的y坐标w = box[1] - box[0] # 计算边界框的宽度h = box[3] - box[2] # 计算边界框的高度x = x * dw # 缩放x坐标w = w * dw # 缩放宽度y = y * dh # 缩放y坐标h = h * dh # 缩放高度return x,y,w,h# 定义一个函数,将标注文件从xml格式转为YOLO格式
dir = "D:/jupyter notebook/365-DL/YOLO/Y2/yolov5-master/Y2-fruit_data/"
def convert_annotations(image_id):# 打开xml标注文件in_file = open(dir + "annotations/%s.xml" % (image_id), encoding='UTF-8') # 打开要写入的YOLO格式标签文件out_file = open(dir + "labels/%s.txt" % (image_id), 'w')# 解析xml文件tree = ET.parse(in_file)root = tree.getroot()# 获取图像文件名filename = root.find('filename').text# 获取图像文件格式filenameFormat = filename.split(".")[1]# 获取图像尺寸信息size = root.find('size')# 获取图像的宽、高w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):# 获取对象的难度标志difficult = obj.find('difficult').text# 获取对象的类别名称cls = obj.find('name').textif cls not in classes or int(difficult)==1:continue# 获取类别索引cls_id = classes.index(cls)# 获取对象的边界框信息,包括:左上角x坐标、左上角y坐标、右下角x坐标、右下角y坐标xmlbox = obj.find('bndbox')b = ( float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text) )b1,b2,b3,b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1,b2,b3,b4)# 调用convert()函数,将边界框坐标转换为YOLO格式bb = convert((w,h), b)out_file.write(str(cls_id)+" " + " ".join([str(a) for a in bb]) + "\n")return filenameFormat
# 获取当前工作目录
wd = getcwd()
# 遍历每个数据集(train、val、test)
for image_set in sets:# 如果labels目录不存在,就创建它if not os.path.exists(dir + "labels/"):os.makedirs(dir + "labels/")# 从数据集文件中获取图像id列表image_ids = open(dir + "ImageSets/Main/%s.txt" % (image_set)).read().strip().split()# 打开要写入的文件,写入图像文件路径和格式list_file = open(dir + "ImageSets/Main/%s.txt" % (image_set), 'w')for image_id in image_ids:filenameFormat = convert_annotations(image_id)list_file.write(abs_path + '/Y2-fruit_data/images/%s.%s\n' % (image_id,filenameFormat))list_file.close()
执行后得到结果:
四、创建 fruit.yaml
文件
新建fruit.yaml
文件:
train: D:/jupyter notebook/365-DL/YOLO/Y2/yolov5-master/Y2-fruit_data/ImageSets/Main/train.txt
val: D:/jupyter notebook/365-DL/YOLO/Y2/yolov5-master/Y2-fruit_data/ImageSets/Main/val.txt# number of classes
nc: 4# class names
names: ["banana", "snake fruit", "dragon fruit", "pineapple"]
五、开始用自己的数据集训练模型
(1) 输入训练指令
由于本机没有GPU,所以执行:python .\train.py --img 900 --batch 2 --epoch 100 --data .\fruit.yaml --cfg .\models\yolov5s.yaml --weights .\yolov5s.pt --device cpu
如果有GPU,则执行:
python .\train.py --img 900 --batch 2 --epoch 100 --data .\fruit.yaml --cfg .\models\yolov5s.yaml --weights .\yolov5s.pt --device '0'
执行命令后,出现如下提示,表明训练进行中,等待训练完成,查看训练结果。
(2)查看训练结果
如图中所示,使用YOLO-v5s训练本文的数据集:
- a. 100个epoch需要的时间是3.382小时
- b. YOLOv5s 网络结构: 157 层, 参数量是7020913 , 梯度是0 , GFLOPs是15.8
- c. 还显示了类别的训练结果,包括P-R值、mAP50的值
- d. 训练结果保存在
runs\train\exp7
,在该路径下生成了许多文件:
打开其中一张图片,如val_batch1_labels.jpg
,如下图,显示了各水果的标签:
打开val_batch1_labels.jpg
,则显示了带预测值的标签:
相关文章:

【Week Y2】使用自己的数据集训练YOLO-v5s
Y2-使用自己的数据集训练YOLO-v5s 零、遇到的问题汇总(1)遇到git的import error(2)Error:Dataset not found(3)Error:删除中文后,训练图片路径不存在 一、.xml文件里保存…...

蓝桥杯--基础(哈夫曼)
import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Scanner;public class BASIC28 {//哈夫曼书public static void main(String[] args) {Scanner Scannernew Scanner(System.in);int nScanner.nextInt();List<Integer&…...
【Redis内存数据库】NoSQL的特点和应用场景
前言 Redis作为当今最流行的内存数据库,已经成为服务端加速的必备工具之一。 NoSQL数据库采用了非关系型的数据存储模型,能够更好地处理海量数据和高并发访问。 内存数据库具有更快的读写速度和响应时间,因为内存访问速度比磁盘访问速度快…...

JavaScript基础知识2
求数组的最大值案例 let arr[2,6,1,7,400,55,88,100]let maxarr[0]let minarr[0]for(let i1;i<arr.length;i){max<arr[i]?maxarr[i]:maxmin>arr[i]?minarr[i]:min}console.log(最大值是:${max})console.log(最小值是:${min}) 操作数组 修改…...

Linux之线程同步
目录 一、问题引入 二、实现线程同步的方案——条件变量 1、常用接口: 2、使用示例 一、问题引入 我们再次看看上次讲到的多线程抢票的代码:这次我们让一个线程抢完票之后不去做任何事。 #include <iostream> #include <unistd.h> #inc…...
03 龙芯平台openstack部署搭建-keystone部署
#!/bin/bash #创建keystone数据库并授权,可通过mysql -ukeystone -ploongson验证授权登录 mysql -uroot -e “set password for rootlocalhost password(‘loongson’);” mysql -uroot -ploongson -e ‘CREATE DATABASE keystone;’ #本地登录 mysql -uroot -ploo…...
定义了服务器的端口号和Servlet的上下文路径
server: port: 1224 servlet: context-path: /applet 这个配置定义了服务器的端口号和Servlet的上下文路径。 下面是配置的解释: server.port: 1224:这表示服务器应该监听在1224端口上。server.servlet.context-path: /applet:这表…...

AI论文速读 | UniST:提示赋能通用模型用于城市时空预测
本文是时空领域的统一模型——UniST,无独有偶,时序有个统一模型新工作——UniTS,感兴趣的读者也可以阅读今天发布的另外一条。 论文标题:UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction 作者&…...

rabbitmq-spring-boot-start配置使用手册
rabbitmq-spring-boot-start配置使用手册 文章目录 1.yaml配置如下2.引入pom依赖如下2.1 引入项目resources下libs中的jar包依赖如下2.2引入maven私服依赖如下 3.启动类配置如下4.项目中测试发送消息如下5.项目中消费消息代码示例6.mq管理后台交换机队列创建及路由绑定关系如下…...

操作系统知识-操作系统作用+进程管理-嵌入式系统设计师备考笔记
0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记,未经本人许可,请勿转载,如发现本笔记内容的错误还望各位不吝赐教(笔记内容可能有误怕产生错误引导)。 本章的主要内容见下图: 1、操作系统的作用…...

Go语言中的锁与管道的运用
目录 1.前言 2.锁解决方案 3.管道解决方案 4.总结 1.前言 在写H5小游戏的时候,由于需要对多个WebSocket连接进行增、删、查的管理和对已经建立连接的WebSocket通过服务端进行游戏数据交换的需求。于是定义了一个全局的map集合进行连接的管理,让所有…...

前端 - 基础 表单标签 -- 表单元素( input - type属性) 文本框和密码框
表单元素 : 在表单域中可以定义各种表单元素,这些表单元素就是允许用户在表单中输入或选择 的内容控件。 表单元素的外观也各不一样,有小圆圈,有正方形,也有方框,乱七八糟的,各种各样…...
关于MySQL模糊搜索不区分大小写
在我们日常使用ORM框架进行模糊查询时,会发现,搜索的结果是不区分关键字的英文大小写的,那这是为什么呢? 原因是MySQL的like本就不区分大小写;如果在建表的时候,没有设置好字段区分大小 //包含j和J的都会被…...

论文阅读——MoCo
Momentum Contrast for Unsupervised Visual Representation Learning 动量在数学上理解为加权移动平均: yt-1是上一时刻输出,xt是当前时刻输入,m是动量,不想让当前时刻输出只依赖于当前时刻的输入,m很大时࿰…...

ARM 寄存器学习:(一)arm多种模式下得寄存器
一.ARM7种状态以及每种状态的寄存器: ARM 处理器共有 7 种不同的处理器模式,在每一种处理器模式中可见的寄存器包括 15 个通用寄存器( R0~R14)、一个或两个(User和Sys不是异常模式,没有spsr寄存器)状态寄存器(cpsr和spsr&…...

【nfs报错】rpc mount export: RPC: Unable to receive; errno = No route to host
NFS错误 问题现象解决方法 写在前面 这两天搭建几台服务器,需要使用nfs服务,于是六台选其一做服务端,其余做客户端,搭建过程写在centos7离线搭建NFS共享文件,但是访问共享时出现报错:rpc mount export: RPC…...

备战蓝桥杯---牛客寒假训练营2VP
题挺好的,收获了许多 1.暴力枚举(许多巧妙地处理细节方法) n是1--9,于是我们可以直接暴力,对于1注意特判开头0但N!1,对于情报4,我们可以把a,b,c,d的所有取值枚举一遍,那么如何判断有…...

QCustomPlot-绘制X轴为日期的折线图
主要代码如下: void Widget::InitQLineXDateAddData() {customPlot new QCustomPlot(this);// 创建日期时间类型的刻度生成器QSharedPointer<QCPAxisTickerDateTime> dateTimeTicker(new QCPAxisTickerDateTime);dateTimeTicker->setDateTimeFormat(&quo…...

腾讯春招后端一面(算法篇)
前言: 哈喽大家好,前段时间在小红书和牛客上发了面试的经验贴,很多同学留言问算法的具体解法,今天就详细写个帖子回复大家。 因为csdn是写的比较详细,所以更新比较慢,大家见谅~~ 就题目而言,…...
Filebeat rpm方式安装及配置
一、使用服务器root用户、filebeat8.11.1版本,rpm安装方式进行安装 curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-8.11.1-x86_64.rpm sudo rpm -vi filebeat-8.11.1-x86_64.rpm 二、配置核心的采集文件、使用inputs热更方式、配置filebeat本身…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...

云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...

Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
MyBatis-Plus 常用条件构造方法
1.常用条件方法 方法 说明eq等于 ne不等于 <>gt大于 >ge大于等于 >lt小于 <le小于等于 <betweenBETWEEN 值1 AND 值2notBetweenNOT BETWEEN 值1 AND 值2likeLIKE %值%notLikeNOT LIKE %值%likeLeftLIKE %值likeRightLIKE 值%isNull字段 IS NULLisNotNull字段…...