当前位置: 首页 > news >正文

C语言经典算法-8

文章目录

  • 其他经典例题跳转链接
    • 41.基数排序法
    • 42.循序搜寻法(使用卫兵)
    • 43.二分搜寻法(搜寻原则的代表)
    • 44.插补搜寻法
    • 45.费氏搜寻法

其他经典例题跳转链接

C语言经典算法-1
1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠走迷官(一)6. 老鼠走迷官(二)7. 骑士走棋盘8. 八皇后9. 八枚银币10. 生命游戏

C语言经典算法-2
字串核对、双色、三色河内塔、背包问题(Knapsack Problem)、蒙地卡罗法求 PI、Eratosthenes筛选求质数

C语言经典算法-3
超长整数运算(大数运算)、长 PI、最大公因数、最小公倍数、因式分解、完美数、阿姆斯壮数

C语言经典算法-4
最大访客数、中序式转后序式(前序式)、后序式的运算、洗扑克牌(乱数排列)、Craps赌博游戏

C语言经典算法-5
约瑟夫问题(Josephus Problem)、排列组合、格雷码(Gray Code)、产生可能的集合、m元素集合的n个元素子集

C语言经典算法-6
数字拆解、得分排行,选择、插入、气泡排序、Shell 排序法 - 改良的插入排序、Shaker 排序法 - 改良的气泡排序

C语言经典算法-7
排序法 - 改良的选择排序、快速排序法(一)、快速排序法(二)、快速排序法(三)、合并排序法

C语言经典算法-8
基数排序法、循序搜寻法(使用卫兵)、二分搜寻法(搜寻原则的代表)、插补搜寻法、费氏搜寻法

C语言经典算法-9
稀疏矩阵、多维矩阵转一维矩阵、上三角、下三角、对称矩阵、奇数魔方阵、4N 魔方阵、2(2N+1) 魔方阵

41.基数排序法

说明在之前所介绍过的排序方法,都是属于「比较性」的排序法,也就是每次排序时 ,都是比较整个键值的大小以进行排序。
这边所要介绍的「基数排序法」(radix sort)则是属于「分配式排序」(distribution sort),基数排序法又称「桶子法」(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些「桶」中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog®m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。
解法基数排序的方式可以采用LSD(Least sgnificant digital)或MSD(Most sgnificant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。
以LSD为例,假设原来有一串数值如下所示:
73, 22, 93, 43, 55, 14, 28, 65, 39, 81
首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中:
在这里插入图片描述

接下来将这些桶子中的数值重新串接起来,成为以下的数列:
81, 22, 73, 93, 43, 14, 55, 65, 28, 39
接着再进行一次分配,这次是根据十位数来分配:
在这里插入图片描述

接下来将这些桶子中的数值重新串接起来,成为以下的数列:
14, 22, 28, 39, 43, 55, 65, 73, 81, 93
这时候整个数列已经排序完毕;如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。
LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好,MSD的方式恰与LSD相反,是由高位数为基底开始进行分配,其他的演 算方式则都相同。

#include <stdio.h> 
#include <stdlib.h> int main(void) { int data[10] = {73, 22, 93, 43, 55, 14, 28, 65, 39, 81}; int temp[10][10] = {0}; int order[10] = {0}; int i, j, k, n, lsd; k = 0; n = 1; printf("\n排序前: "); for(i = 0; i < 10; i++) printf("%d ", data[i]); putchar('\n'); while(n <= 10) { for(i = 0; i < 10; i++) { lsd = ((data[i] / n) % 10); temp[lsd][order[lsd]] = data[i]; order[lsd]++; } printf("\n重新排列: "); for(i = 0; i < 10; i++) { if(order[i] != 0) for(j = 0; j < order[i]; j++) { data[k] = temp[i][j]; printf("%d ", data[k]); k++; } order[i] = 0; } n *= 10; k = 0; } putchar('\n'); printf("\n排序后: "); for(i = 0; i < 10; i++) printf("%d ", data[i]); return 0; 
} 

42.循序搜寻法(使用卫兵)

说明
搜寻的目的,是在「已排序的资料」中寻找指定的资料,而当中循序搜寻是最基本的搜寻法,只要从资料开头寻找到最后,看看是否找到资料即可。
解法
初学者看到循序搜寻,多数都会使用以下的方式来进行搜寻:

while(i < MAX) { if(number[i] == k) { printf("找到指定值"); break; } i++; 
} 

这个方法基本上没有错,但是可以加以改善,可以利用设定卫兵的方式,省去if判断式,卫兵通常设定在数列最后或是最前方,假设设定在列前方好了(索引0的 位置),我们从数列后方向前找,如果找到指定的资料时,其索引值不是0,表示在数列走访完之前就找到了,在程式的撰写上,只要使用一个while回圈就可 以了。

下面的程式为了配合卫兵的设置,自行使用快速排序法先将产生的数列排序,然后才进行搜寻,若只是数字的话,通常您可以使用程式语言函式库所提供的搜寻函式。

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} int search(int[]); 
int partition(int[], int, int); 
void quicksort(int[], int, int); int main(void) { int number[MAX+1] = {0}; int i, find; srand(time(NULL)); for(i = 1; i <= MAX; i++) number[i] = rand() % 100; quicksort(number, 1, MAX); printf("数列:"); for(i = 1; i <= MAX; i++) printf("%d ", number[i]); printf("\n输入搜寻值:"); scanf("%d", &number[0]); if(find = search(number)) printf("\n找到数值于索引 %d ", find); else printf("\n找不到数值"); printf("\n"); return 0; 
} int search(int number[]) { int i, k; k = number[0]; i = MAX; while(number[i] != k) i--; return i; 
} int partition(int number[], int left, int right) { int i, j, s; s = number[right]; i = left - 1; for(j = left; j < right; j++) { if(number[j] <= s) { i++; SWAP(number[i], number[j]); } } SWAP(number[i+1], number[right]); return i+1; 
} void quicksort(int number[], int left, int right) { int q; if(left < right) { q = partition(number, left, right); quicksort(number, left, q-1); quicksort(number, q+1, right); } 
} 

43.二分搜寻法(搜寻原则的代表)

说明如果搜寻的数列已经有排序,应该尽量利用它们已排序的特性,以减少搜寻比对的次数,这是搜寻的基本原则,二分搜寻法是这个基本原则的代表。
解法在二分搜寻法中,从数列的中间开始搜寻,如果这个数小于我们所搜寻的数,由于数列已排序,则该数左边的数一定都小于要搜寻的对象,所以无需浪费时间在左边的数;如果搜寻的数大于所搜寻的对象,则右边的数无需再搜寻,直接搜寻左边的数。

所以在二分搜寻法中,将数列不断的分为两个部份,每次从分割的部份中取中间数比对,例如要搜寻92于以下的数列,首先中间数索引为(0+9)/2 = 4(索引由0开始):
[3 24 57 57 67 68 83 90 92 95]

由于67小于92,所以转搜寻右边的数列:
3 24 57 57 67 [68 83 90 92 95]
由于90小于92,再搜寻右边的数列,这次就找到所要的数了:
3 24 57 57 67 68 83 90 [92 95]

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} void quicksort(int[], int, int); 
int bisearch(int[], int); int main(void) { int number[MAX] = {0}; int i, find; srand(time(NULL)); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; } quicksort(number, 0, MAX-1); printf("数列:"); for(i = 0; i < MAX; i++) printf("%d ", number[i]); printf("\n输入寻找对象:"); scanf("%d", &find); if((i = bisearch(number, find)) >= 0) printf("找到数字于索引 %d ", i); else printf("\n找不到指定数"); printf("\n"); return 0; 
} int bisearch(int number[], int find) { int low, mid, upper; low = 0; upper = MAX - 1; while(low <= upper) { mid = (low+upper) / 2; if(number[mid] < find) low = mid+1; else if(number[mid] > find) upper = mid - 1; else return mid; } return -1; 
} void quicksort(int number[], int left, int right) { int i, j, k, s; if(left < right) { s = number[(left+right)/2]; i = left - 1; j = right + 1; while(1) { while(number[++i] < s) ;  // 向右找 while(number[--j] > s) ;  // 向左找 if(i >= j) break; SWAP(number[i], number[j]); } quicksort(number, left, i-1);   // 对左边进行递回 quicksort(number, j+1, right);  // 对右边进行递回 } 
} 

44.插补搜寻法

说明
如果却搜寻的资料分布平均的话,可以使用插补(Interpolation)搜寻法来进行搜寻,在搜寻的对象大于500时,插补搜寻法会比 二分搜寻法 来的快速。
解法
插补搜寻法是以资料分布的近似直线来作比例运算,以求出中间的索引并进行资料比对,如果取出的值小于要寻找的值,则提高下界,如果取出的值大于要寻找的 值,则降低下界,如此不断的减少搜寻的范围,所以其本原则与二分搜寻法是相同的,至于中间值的寻找是透过比例运算,如下所示,其中K是指定要寻找的对象, 而m则是可能的索引值:

在这里插入图片描述

 #include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} void quicksort(int[], int, int); 
int intsrch(int[], int); int main(void) { int number[MAX] = {0}; int i, find; srand(time(NULL)); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; } quicksort(number, 0, MAX-1); printf("数列:"); for(i = 0; i < MAX; i++) printf("%d ", number[i]); printf("\n输入寻找对象:"); scanf("%d", &find); if((i = intsrch(number, find)) >= 0) printf("找到数字于索引 %d ", i); else printf("\n找不到指定数"); printf("\n"); return 0; 
} int intsrch(int number[], int find) { int low, mid, upper; low = 0; upper = MAX - 1; while(low <= upper) { mid = (upper-low)* (find-number[low])/(number[upper]-number[low]) + low; if(mid < low || mid > upper) return -1; if(find < number[mid]) upper = mid - 1; else if(find > number[mid]) low = mid + 1; else return mid; } return -1;
} void quicksort(int number[], int left, int right) { int i, j, k, s; if(left < right) { s = number[(left+right)/2]; i = left - 1; j = right + 1; while(1) { while(number[++i] < s) ;  // 向右找 while(number[--j] > s) ;  // 向左找 if(i >= j) break; SWAP(number[i], number[j]); } quicksort(number, left, i-1);   // 对左边进行递回 quicksort(number, j+1, right);  // 对右边进行递回 } 
} 

45.费氏搜寻法

说明
二分搜寻法每次搜寻时,都会将搜寻区间分为一半,所以其搜寻时间为O(log(2)n),log(2)表示以2为底的log值,这边要介绍的费氏搜寻,其利用费氏数列作为间隔来搜寻下一个数,所以区间收敛的速度更快,搜寻时间为O(logn)。
解法
费氏搜寻使用费氏数列来决定下一个数的搜寻位置,所以必须先制作费氏数列,这在之前有提过;费氏搜寻会先透过公式计算求出第一个要搜寻数的位置,以及其代 表的费氏数,以搜寻对象10个数字来说,第一个费氏数经计算后一定是F5,而第一个要搜寻的位置有两个可能,例如若在下面的数列搜寻的话(为了计算方便, 通常会将索引0订作无限小的数,而数列由索引1开始):

-infin; 1 3 5 7 9 13 15 17 19 20

如果要搜寻5的话,则由索引F5 = 5开始搜寻,接下来如果数列中的数小于指定搜寻值时,就往左找,大于时就向右,每次找的间隔是F4、F3、F2来寻找,当费氏数为0时还没找到,就表示寻找失败,如下所示:
在这里插入图片描述

由于第一个搜寻值索引F5 = 5处的值小于19,所以此时必须对齐数列右方,也就是将第一个搜寻值的索引改为F5+2 = 7,然后如同上述的方式进行搜寻,如下所示:
在这里插入图片描述

至于第一个搜寻值是如何找到的?我们可以由以下这个公式来求得,其中n为搜寻对象的个数:
Fx + m = n
Fx <= n

也就是说Fx必须找到不大于n的费氏数,以10个搜寻对象来说:
Fx + m = 10

取Fx = 8, m = 2,所以我们可以对照费氏数列得x = 6,然而第一个数的可能位置之一并不是F6,而是第x-1的费氏数,也就是F5 = 5。

如果数列number在索引5处的值小于指定的搜寻值,则第一个搜寻位置就是索引5的位置,如果大于指定的搜寻值,则第一个搜寻位置必须加上m,也就是F5 + m = 5 + 2 = 7,也就是索引7的位置,其实加上m的原因,是为了要让下一个搜寻值刚好是数列的最后一个位置。

费氏搜寻看来难懂,但只要掌握Fx + m = n这个公式,自己找几个实例算一次,很容易就可以理解;费氏搜寻除了收敛快速之外,由于其本身只会使用到加法与减法,在运算上也可以加快。

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 15 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} void createfib(void);     // 建立费氏数列 
int findx(int, int);          // 找x值 
int fibsearch(int[], int);  // 费氏搜寻 
void quicksort(int[], int, int);  // 快速排序 int Fib[MAX] = {-999}; int main(void) { int number[MAX] = {0}; int i, find; srand(time(NULL)); for(i = 1; i <= MAX; i++) { number[i] = rand() % 100; } quicksort(number, 1, MAX); printf("数列:"); for(i = 1; i <= MAX; i++) printf("%d ", number[i]); printf("\n输入寻找对象:"); scanf("%d", &find); if((i = fibsearch(number, find)) >= 0) printf("找到数字于索引 %d ", i); else printf("\n找不到指定数"); printf("\n"); return 0; 
} // 建立费氏数列 
void createfib(void) { int i; Fib[0] = 0; Fib[1] = 1; for(i = 2; i < MAX; i++) Fib[i] = Fib[i-1] + Fib[i-2]; 
} // 找 x 值 
int findx(int n, int find) { int i = 0; while(Fib[i] <= n) i++; i--; return i; 
} // 费式搜寻 
int fibsearch(int number[], int find) { int i, x, m; createfib(); x  = findx(MAX+1,find); m = MAX - Fib[x]; printf("\nx = %d, m = %d, Fib[x] = %d\n\n", x, m, Fib[x]); x--; i = x; if(number[i] < find) i += m; while(Fib[x] > 0) { if(number[i] < find) i += Fib[--x]; else if(number[i] > find) i -= Fib[--x]; else return i; } return -1; 
} void quicksort(int number[], int left, int right) { int i, j, k, s; if(left < right) { s = number[(left+right)/2]; i = left - 1; j = right + 1; while(1) { while(number[++i] < s) ;  // 向右找 while(number[--j] > s) ;  // 向左找 if(i >= j) break; SWAP(number[i], number[j]); } quicksort(number, left, i-1);   // 对左边进行递回 quicksort(number, j+1, right);  // 对右边进行递回 } 
} 

系列好文,点击链接即可跳转

C语言经典算法-7
排序法 - 改良的选择排序、快速排序法(一)、快速排序法(二)、快速排序法(三)、合并排序法

C语言经典算法-9
稀疏矩阵、多维矩阵转一维矩阵、上三角、下三角、对称矩阵、奇数魔方阵、4N 魔方阵、2(2N+1) 魔方阵

相关文章:

C语言经典算法-8

文章目录 其他经典例题跳转链接41.基数排序法42.循序搜寻法&#xff08;使用卫兵&#xff09;43.二分搜寻法&#xff08;搜寻原则的代表&#xff09;44.插补搜寻法45.费氏搜寻法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠…...

Panasonic松下PLC如何数据采集?如何实现快速接入IIOT云平台?

在工业自动化领域&#xff0c;数据采集与远程控制是提升生产效率、优化资源配置的关键环节。对于使用Panasonic松下PLC的用户来说&#xff0c;如何实现高效、稳定的数据采集&#xff0c;并快速接入IIOT云平台&#xff0c;是摆在他们面前的重要课题。HiWoo Box工业物联网关以其强…...

高性能 MySQL 第四版(GPT 重译)(四)

第十一章&#xff1a;扩展 MySQL 在个人项目中运行 MySQL&#xff0c;甚至在年轻公司中运行 MySQL&#xff0c;与在市&#xfffd;&#xfffd;已经建立并且“呈现指数增长”业务中运行 MySQL 大不相同。在高速业务环境中&#xff0c;流量可能每年增长数倍&#xff0c;环境变得…...

整型数组按个位值排序 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 给定一个非空数组(列表)&#xff0c;其元素数据类型为整型&#xff0c;请按照数组元素十进制最低位从小到大进行排序&#xff0c;十进制最低位相同的元素&#xf…...

【React】Diff算法

1. React15 Diff算法&#xff08;递归进行&#xff09; 一句话概括&#xff1a;新虚拟DOM和旧虚拟DOM对比&#xff0c;找出差异&#xff0c;根据差异更新真实DOM Diff过程描述&#xff1a; 1. 树比较(DOM) 同层节点之间相互比较&#xff0c;不会跨层级比较。&#xff08;当发现…...

【物联网】Modbus 协议及应用

Modbus 协议简介 QingHub设计器在设计物联网数据采集时不可避免的需要针对Modbus协议的设备做相关数据采集&#xff0c;这里就我们的实际项目经验分享Modbus协议 简介 Modbus由MODICON公司于1979年开发&#xff0c;是一种工业现场总线协议标准。1996年施耐德公司推出基于以太…...

Docker容器引擎

1、Docker是什么。 Docker是在Linux容器里运行应用的开源工具&#xff0c;是一种轻量级的"虚拟机"。Docker的logo设计为蓝色鲸鱼&#xff0c;拖着许多集装箱。鲸鱼可以看作宿主机&#xff0c;而集装箱可以理解为相互隔离的容器&#xff0c;每个集装箱中都包含自己的应…...

2.28线程

注意被抢占时是返回原队列&#xff0c;优先级不变。越往下优先级越小。往下没有优先级时&#xff0c;在最低的优先级队列里循环 到达了不一定会被服务&#xff0c;会进入就绪态进行等待 。核心等式就是周转时间运行时间等待时间&#xff0c;带权就是周转/运行&#xff0c; 随着…...

TCP/IP ⽹络模型

TCP/IP ⽹络模型 对于同⼀台设备上的进程间通信&#xff0c;有很多种⽅式&#xff0c;⽐如有管道、消息队列、共享内存、信号等⽅式&#xff0c;⽽对于不同设备上的进程间通信&#xff0c;就需要⽹络通信&#xff0c;⽽设备是多样性的&#xff0c;所以要兼容多种多样的设备&am…...

云原生:重塑未来应用的基石

随着数字化时代的不断深入&#xff0c;云原生已经成为了IT领域的热门话题。它代表着一种全新的软件开发和部署范式&#xff0c;旨在充分利用云计算的优势&#xff0c;并为企业带来更大的灵活性、可靠性和效率。今天我们就来聊一聊这个热门的话题&#xff1a;云原生~ &#x1f4…...

蓝桥杯day4刷题日记

P8605 [蓝桥杯 2013 国 AC] 网络寻路 思路来源于https://www.luogu.com.cn/article/iat8irsf #include <iostream> using namespace std; int n,m; int q[10010]; int v[100010],u[100010]; long long res;int main() {cin>>n>>m;for(int i0;i<m;i){cin…...

[Qt学习笔记]Qt下使用Halcon实现采图时自动对焦的功能(Brenner梯度法)

目录 1、介绍2、实现方法2.1 算法实现过程2.2 模拟采集流程 3、总结4、代码展示 1、介绍 在机器视觉的开发中&#xff0c;现在有很多通过电机去做相机的聚焦调节&#xff0c;对比手工调节&#xff0c;自动调节效果更好&#xff0c;而且其也能满足设备自动的需求&#xff0c;尤…...

常州IGM机器人RTE497的日常维修保养方法

一、IGM机器人RTE497日常检查 每日工作前&#xff0c;进行以下检查&#xff1a; 外观检查&#xff1a;确认IGM机器人RTE497本体无明显损伤&#xff0c;各部件连接稳固。 电缆检查&#xff1a;检查所有电缆、气管等是否完好&#xff0c;无磨损、无挤压。 润滑检查&#xff1a;确…...

如何利用机器学习和Python编写预测模型来预测设备故障

预测设备故障是机器学习和数据科学的一个常见问题&#xff0c;通常可以通过以下几个步骤来解决&#xff1a; 1. 数据收集 首先&#xff0c;需要收集与设备运行相关的数据&#xff0c;包括&#xff1a; 设备的历史数据环境数据&#xff08;如温度、湿度等&#xff09;使用时间…...

mysql部署(2)主从复制

在前面的基础上&#xff0c;现有26、41两个mysql8的实例&#xff0c;下面以26为主41为从搭建主从复制&#xff1a; 机器主从端口号root密码主从复制账号密码xxx.xx.xxx.26主3306Mysql#26user1/user1#26xxx.xx.xxx.41从3306Mysql#41 一、master主库配置 1、修改mysql配置文件…...

FX-数组的使用

1一维数组 1.1一维数组的创建和初始化 1.1.1数组的创建 //代码1 int arr1[10]; char arr2[10]; float arr3[1]; double arr4[20]; //代码2 //用宏定义的方式 #define X 3 int arr5[X]; //代码3 //错误使用 int count 10; int arr6[count];//数组时候可以正常创建&#xff1…...

springboot283图书商城管理系统

图书商城管理系统 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本图书商城管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理…...

FFmpeg-- c++实现:音频流aac和视频流h264封装

文章目录 流程api核心代码muxer.hmuxer.cpp aac 和 h264 封装为视频流&#xff0c;封装为c的Muxter类 流程 分配视频文件上下文 int Init(const char *url); 创建流&#xff0c;赋值给视频的音频流和视频流 int AddStream(AVCodecContext *codec_ctx); 写视频流的head int Se…...

单片机烧录方式,JTAG,ISP,SWD,

常见的词汇 参考 ISP&#xff1a;In System Programing&#xff0c;在系统编程 IAP&#xff1a;In Application Programing&#xff0c;在应用编程 ICP&#xff1a;In Circuit Programing&#xff0c;在电路编程 ICSP全称是In Circuit Serial Programming JTAG(Joint Test Act…...

【项目管理后台】Vue3+Ts+Sass实战框架搭建一

项目管理后台 建立项目最好是卸载Vetur 新建.env.d.ts文件安装Eslint安装校验忽略文件添加运行脚本 安装prettier新建.prettierrc.json添加规则新建.prettierignore忽略文件 安装配置stylelint新建.stylelintrc.cjs 添加后的运行脚本配置husky配置commitlint配置husky 强制使用…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图&#xff0c;展示模…...

Git 命令全流程总结

以下是从初始化到版本控制、查看记录、撤回操作的 Git 命令全流程总结&#xff0c;按操作场景分类整理&#xff1a; 一、初始化与基础操作 操作命令初始化仓库git init添加所有文件到暂存区git add .提交到本地仓库git commit -m "提交描述"首次提交需配置身份git c…...