当前位置: 首页 > news >正文

Educational Codeforces Round 163 (Rated for Div. 2)(A,B,C,D,E)

比赛链接

好忙好忙好忙,慢慢补老比赛的题解了。

这场没啥算法,全是思维。有也是BFS,屎。


A. Special Characters

题意:

您将得到一个整数 n n n

您的任务是构建一串大写的拉丁字母。此字符串中必须正好有 n n n 个特殊字符。让我们称一个字符为特殊字符,如果它恰好等于它的一个邻居。

例如,AAABAACC字符串中有 6 6 6 个特殊字符(位置为: 1 1 1 3 3 3 5 5 5 6 6 6 7 7 7 8 8 8 )。

打印任何合适的字符串或报告没有这样的字符串。

思路:

发现如果是 AABBAABB 这样子的序列的话,每个字符都会是特殊字符。但是这样的只能构造出 n n n 为偶数时候的情况。考虑能否构造出 n n n 为奇数时候的情况。

因为一个字符为特殊字符只和它的左右相邻的字符有关,再往前是什么它是不在意的。所以我们构造 n n n 为奇数时候的情况时,前面的部分仍然用类似 AABB 这种形式来构造,因为三个及以上连续的字符挨在一起时,中间的字符就不是特殊字符,不会产生贡献了,只有两头的字符会产生贡献,它就和两个字符的等价,所以我们不妨规定挨在一起的相同字符最多有两个

于是,如果前面的部分结尾为 A A AA AA 时,我们后面会补上 B B B,这时这个 B B B 不是特殊字符,因此这时凑不出奇数情况。然后我们继续向后补字符,如果我们补 A A A,这个 A A A 也不是特殊字符,凑不出奇数情况,如果补 B B B,这时补的两个 B B B 都同时成为了特殊字符,相当于上面说的 A A B B AABB AABB 形式,仍然凑不出奇数情况。

如果我们在补上 B A BA BA,然后继续向后补字符,就会重复上面的讨论。因此无论怎么补,我们都凑不出奇数情况。这就意味着 n n n 为奇数时是无解的。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=55;int T,n;
char s[maxn];int main(){cin>>T;while(T--){cin>>n;if(n&1){cout<<"NO"<<endl;continue;}else cout<<"YES"<<endl;for(int i=1;i<=n;i+=4)s[i]=s[i+1]='A';for(int i=3;i<=n;i+=4)s[i]=s[i+1]='B';for(int i=1;i<=n;i++)cout<<s[i];cout<<endl;}return 0;
}

B. Array Fix

题意:

您将得到一个长度为 n n n 的整数数组 a a a

您可以执行以下操作任意次数(可能为零):取数组 a a a 中至少为 10 10 10 的任何元素,将其删除,然后在相同位置插入该元素所包含的数字,按它们出现在该元素中的顺序。例如:

  • 如果我们将此操作应用于数组 [ 12 , 3 , 45 , 67 ] [12, 3, 45, 67] [12,3,45,67] 的第 3 3 3 个元素,则数组将变为 [ 12 , 3 , 4 , 5 , 67 ] [12, 3, 4, 5, 67] [12,3,4,5,67]

  • 如果我们将此操作应用于数组 [ 2 , 10 ] [2, 10] [2,10] 的第 2 2 2 个元素,则数组将变为 [ 2 , 1 , 0 ] [2, 1, 0] [2,1,0]

您的任务是确定是否可以使用上述操作任意次数使 a a a 按非降序排序。换句话说,您必须确定是否可以将数组 a a a 转换为 a 1 ≤ a 2 ≤ ⋯ ≤ a k a_1 \le a_2 \le \dots \le a_k a1a2ak ,其中 k k k 是数组 a a a 的当前长度。

思路:

先注意一下题目说了 0 ≤ a i ≤ 99 0 \le a_i \le 99 0ai99,因此 a i a_i ai 最多就是个两位数。

因为是非降序的,所以从某一位开始,也许后面就都变成了两位及以上的数,这时这些数不能被拆数位,否则变成一位数之后就会变小。反之,在此之前,所有的数都得是一位数,否则某个两位数后面出现了一位数,就不满足非降序的条件了。因此我们找到这个分界点,把分界点之前的所有数都拆掉,然后看满不满足条件就行了。

根据上面的分析,这个分界点之后的数都是不拆数位就满足非降序的,所以我们从后向前找到第一个不满足条件的位置,这个位置就是分界点了。从这个位置向前拆数。一个数拆开后,个位放在后面,十位放在前面。所以我们没必要真的把两个新的数插入到当前位置,这样比较麻烦。

判断这个数是否和后一个数满足非降序的关系,我们直接看一下当前数的十位不小于个位,并且个位不小于后一个数,之后用十位代替这个数,再向前找即可。

code:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=55;int T,n,a[maxn];int main(){cin>>T;while(T--){cin>>n;for(int i=1;i<=n;i++)cin>>a[i];int idx;for(idx=n-1;idx>=1;idx--)if(a[idx]>a[idx+1])break;//		cout<<"***"<<idx<<endl;bool flag=true;for(int i=idx;i>=1;i--){if(a[i]/10>a[i]%10 || a[i]%10>a[i+1]){flag=false;break;}if(a[i]>10)a[i]/=10;}puts((flag)?"YES":"NO");}return 0;
}

C. Arrow Path

题意:

有一个网格,由 2 2 2 行和 n n n 列组成。这些行从上到下从 1 1 1 2 2 2 进行编号。列从左到右从 1 1 1 n n n 进行编号。网格的每个单元格都包含一个指向左侧或右侧的箭头。没有箭头指向网格外。

有一个机器人在单元格 ( 1 , 1 ) (1, 1) (1,1) 中启动 。每一秒钟,都有以下两个动作相继发生:

  1. 首先,机器人向左、向右、向下或向上移动(它不能尝试走出网格,也不能跳过这次移动

  2. 然后,它沿着放置在当前单元格(移动后结束的单元格)中的箭头移动。

您的任务是确定机器人是否可以到达单元 ( 2 , n ) (2, n) (2,n)

思路:

比较明显的BFS。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#define pii pair<int,int>
using namespace std;
const int maxn=2e5+5;int T,n;
string mp[5];int fx[]={1,-1,0,0},fy[]={0,0,1,-1};int main(){cin>>T;while(T--){cin>>n;cin>>mp[1]>>mp[2];mp[1]=" "+mp[1];mp[2]=" "+mp[2];queue<pii> q;vector<vector<bool> > vis(5,vector<bool>(n+5,false));q.push(pii(1,1));vis[1][1]=true;bool flag=false;while(!q.empty()){int ux=q.front().first,uy=q.front().second;q.pop();if(ux==2 && uy==n){flag=true;break;}for(int i=0,x,y;i<4;i++){x=ux+fx[i],y=uy+fy[i];if(x<1 || x>2 || y<1 || y>n)continue;if(mp[x][y]=='<')y--;else y++;if(!vis[x][y]){q.push(pii(x,y));vis[x][y]=true;}}}puts((flag)?"YES":"NO");}return 0;
}

D. Tandem Repeats?

题意:

您将得到一个字符串 s s s ,它由小写的拉丁字母以及问号组成。

串联重复序列(tandem repeat)是指长度为偶数的串,满足其前一半等于其后一半。

您的目标是将每个问号替换为某个小写拉丁字母,求出最大可能的串联重复序列子串的长度。

思路:

考虑到这个串联重复序列比如 a b c a b c abcabc abcabc,说白了就是第 1 1 1 个字符向后 3 3 3 个长度的子串与第 4 4 4 个字符向后 3 3 3 个长度的子串相同。那么一定第 2 2 2 个字符向后 2 2 2 个长度的子串与第 5 5 5 个字符向后 2 2 2 个长度的子串相同,前者可以由后者推出来。

所以我们设 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从第 i i i 个字符开始的子串和第 j j j 个字符开始的子串最长匹配长度是多少。当第 i i i 个字符和第 j j j 个字符相同时(两个字符真的相同,或者其中一个为 ? ? ?,可以万能匹配), d p [ i ] [ j ] dp[i][j] dp[i][j] 就可以从 d p [ i + 1 ] [ j + 1 ] + 1 dp[i+1][j+1]+1 dp[i+1][j+1]+1 推过来。因为是从 i + 1 , j + 1 i+1,j+1 i+1,j+1 推来的,因此 i , j i,j i,j 的枚举需要反着,从 n n n 1 1 1

不过 i ∼ i + d p [ i ] [ j ] − 1 i\sim i+dp[i][j]-1 ii+dp[i][j]1 j ∼ j + d p [ i ] [ j ] − 1 j\sim j+dp[i][j]-1 jj+dp[i][j]1 两个区间的子串匹配不一定就是串联重复序列,它需要正好是 i + d p [ i ] [ j ] − 1 = j − 1 i+dp[i][j]-1=j-1 i+dp[i][j]1=j1 j − i = d p [ i ] [ j ] j-i=dp[i][j] ji=dp[i][j](也就是前后两个子串正好相接)。 d p [ i ] [ j ] dp[i][j] dp[i][j] 如果大于 j − i j-i ji,这时可以直接截取长为 j − i j-i ji 的一段作为串联重复序列,反之就一定无法成为串联重复序列。

code:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;int T,n;
string s;int main(){cin>>T;while(T--){cin>>s;n=s.length();s=" "+s;vector<vector<int> > dp(n+5,vector<int>(n+5,0));for(int i=n;i>=1;i--){for(int j=i-1;j>=1;j--){if(s[i]=='?' || s[j]=='?' || s[i]==s[j])dp[i][j]=dp[i+1][j+1]+1;}}int ans=0;for(int i=1;i<=n;i++){for(int j=1;j<i;j++){int t=dp[i][j];if(t>=i-j)t=i-j;else continue;ans=max(ans,t);}}cout<<ans*2<<endl;}return 0;
}

E. Clique Partition

题意:

给出两个整数 n n n k k k 。在 n n n 个顶点上有一个图,编号从 1 1 1 n n n ,它最初没有边。你必须给每个顶点分配一个整数,设 a i a_i ai 是顶点 i i i 上的整数。所有 a i a_i ai 都应该是从 1 1 1 n n n 的不同整数。

指定整数后,对于每对顶点 ( i , j ) (i, j) (i,j) ,如果 ∣ i − j ∣ + ∣ a i − a j ∣ ≤ k |i - j| + |a_i - a_j| \le k ij+aiajk ,则在它们之间添加一条边。

您的目标是创建一个图,该图可以划分为最小可能(对于给定的 n n n k k k 值)数量的团(Clique)。

图的每个顶点应该恰好属于一个团。

团是一组顶点,其中的每一对顶点都与一条边相连。由于布莱德斯特没有真正提高他的编程技能,他无法解决问题 “给一个图,将其划分为最小数量的团”。因此,我们要求您打印分区本身。

思路:

构造题,构造方法不好想。如果想出了构造方法,写是比较容易的。

要团的个数最少,那么就考虑让团包含的点最多。因为 a i a_i ai 互不重复,所以 ∣ a i − a j ∣ |a_i - a_j| aiaj 至少会是 1 1 1,那么 ∣ i − j ∣ |i - j| ij 最大就是 k − 1 k-1 k1,这时 j − i + 1 j-i+1 ji+1 最大就是 k k k。也就是说,团最多可能包含 k k k 个点

考虑如果一个团能否塞入 k k k 个点,不妨使用顶点 1 ∼ k 1\sim k 1k。而且为了不影响到其他团,所以我们尽量给它们分配 1 ∼ k 1\sim k 1k 的编号。

首先第 1 1 1 个数和第 k k k 个数必须差 1 1 1,否则这一对一定不满足条件。同理,第 1 1 1 个数和第 k − 1 k-1 k1 个数必须差 ≤ 2 \le 2 2,第 2 2 2 个数和第 k k k 个数必须差 ≤ 2 \le 2 2。考虑把第一个数置为中间数 k / 2 k/2 k/2,这样中间数两边都有空间,我们把中间数前面的数降序放在前半部分,中间数后面的数降序放在后半部分。即: k / 2 , k / 2 − 1 , … , 1 , k , k − 1 … , k / 2 + 2 , k / 2 + 1 k/2,k/2-1,\dots,1,k,k-1\dots,k/2+2,k/2+1 k/2,k/21,,1,k,k1,k/2+2,k/2+1

还是比较好验证这么构造的正确性的:前半部分一定满足条件,后半部分一定满足条件。前半部分取一个数,后半部分取一个数的情况也满足条件。综合一下,所有情况都满足条件。

这样 1 ∼ k 1\sim k 1k 的情况就构造出来了,因为相对位置和相对大小是不变的,所以后面的每个团也是这样构造就可以了。

有时候会剩下一些点不足 k k k 个。构造方式同理,把上面的序列截掉后面部分即可,大概就是这样:

  1. 如果 n ≤ k / 2 n\le k/2 nk/2,则 n , n − 1 , … , 1 n,n-1,\dots,1 n,n1,,1
  2. 如果 k / 2 < n < k k/2\lt n\lt k k/2<n<k,则 k / 2 , k / 2 − 1 , … , 1 , n , n − 1 … , k / 2 + 2 , k / 2 + 1 k/2,k/2-1,\dots,1,n,n-1\dots,k/2+2,k/2+1 k/2,k/21,,1,n,n1,k/2+2,k/2+1

团的个数也就很显然了,是 ⌈ n k ⌉ \left\lceil\dfrac nk\right\rceil kn。第 i i i 个点所属的团显然就是第 ⌈ i k ⌉ \left\lceil\dfrac ik\right\rceil ki 个团。

code:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=45;int T,n,k;
int a[maxn];int main(){cin>>T;while(T--){cin>>n>>k;for(int i=1,len=k;i<=n;i+=k){if(i+k-1<=n){for(int j=i;j<i+len;j++)a[j]=j;reverse(a+i,a+i+len/2);reverse(a+i+len/2,a+i+len);}else {if(i+len/2>=n){for(int j=i;j<=n;j++)a[j]=j;reverse(a+i,a+n+1);}else {for(int j=i;j<=n;j++)a[j]=j;reverse(a+i,a+i+len/2);reverse(a+i+len/2,a+n+1);}}}
//		cout<<"***";for(int i=1;i<=n;i++)printf("%d ",a[i]);puts("");cout<<(n+k-1)/k<<endl;for(int i=1;i<=n;i++){printf("%d ",(i+k-1)/k);}puts("");}return 0;
} 

相关文章:

Educational Codeforces Round 163 (Rated for Div. 2)(A,B,C,D,E)

比赛链接 好忙好忙好忙&#xff0c;慢慢补老比赛的题解了。 这场没啥算法&#xff0c;全是思维。有也是BFS&#xff0c;屎。 A. Special Characters 题意&#xff1a; 您将得到一个整数 n n n 。 您的任务是构建一串大写的拉丁字母。此字符串中必须正好有 n n n 个特殊字…...

索引常见面试题

面试中&#xff0c;MySQL 索引相关的问题基本都是一系列问题&#xff0c;都是先从索引的基本原理&#xff0c;再到索引的使用场景&#xff0c;比如&#xff1a; 索引底层使用了什么数据结构和算法&#xff1f;为什么 MySQL InnoDB 选择 Btree 作为索引的数据结构&#xff1f;什…...

【Unity】旋转的尽头是使用四元数让物体旋转

// 导入必要的命名空间 using System.Collections; using System.Collections.Generic; using UnityEngine;// 创建一个名为 RotateObj 的 MonoBehaviour 类&#xff0c;该类可以附加到 Unity 中的游戏对象上并控制其行为 public class RotateObj : MonoBehaviour {// Update 函…...

哔哩哔哩秋招Java二面

前言 作者&#xff1a;晓宜 个人简介&#xff1a;互联网大厂Java准入职&#xff0c;阿里云专家博主&#xff0c;csdn后端优质创作者&#xff0c;算法爱好者 一面过后面试官叫我别走&#xff0c;然后就直接二面&#xff0c;二面比较简短&#xff0c;记录一下&#xff0c;希望可以…...

OSPF特殊区域(stub\nssa)

stub区域——只有1类、2类、3类&#xff1b;完全stub区域——只有1类、2类 NSSA区域&#xff1a;本区域将自己引入的外部路由发布给其他区域&#xff0c;但不需要接收其他区域的路由 在NSSA区域的路由器上&#xff0c;引入外部路由时&#xff0c;不会转换成5类LSA&#xff0c…...

全球首位AI程序员诞生,将会对程序员的影响有多大?

随着全球首位AI程序员Devin的诞生&#xff0c;人工智能技术在编程领域的应用引发了广泛的讨论和思考。这一事件不仅标志着AI技术在软件开发领域的一大步进展&#xff0c;也引起了人们对未来编程职业发展的广泛关注。那么&#xff0c;AI程序员的出现究竟会对程序员的职业生涯产生…...

【晴问算法】提高篇—动态规划专题—最长上升子序列

题目描述 现有一个整数序列a1,a2,...,an​​​​​​&#xff0c;求最长的子序列&#xff08;可以不连续&#xff09;&#xff0c;使得这个子序列中的元素是非递减的。输出该最大长度。 输入描述 第一行一个正整数n&#xff08;1≤n≤100​​​​&#xff09;&#xff0c;表示序…...

天软特色因子看板(2024.3第5期)

该因子看板跟踪天软特色因子A08006(近一月日度买卖压力2)&#xff0c;该因子为近一个月个股每日的相对价格位置&#xff0c;用以刻画股票所受买卖压力&#xff0c;取作 介于0~1间&#xff0c;指标值越大&#xff0c;反映股票在价格相对高位停留的时间越长&#xff0c;所面临的买…...

静态网络配置

一、查看网络命令 1.命令行查看网络配置 1、查看ip\硬件设备-网卡 ifconfig -a ifconfig ens160 网卡名称 ip addr show ip addr show ens160 nmcli device show ens160 nmcli con up ens160 2、主机名称 hostname hostname hfj.huaxia.com 3、查看路由和网关 rou…...

多种智能搜索算法可视化还原 3D 魔方

2024/03/19&#xff1a;程序更新说明&#xff08;文末程序下载链接已更新&#xff09; 版本&#xff1a;v1.0 → v1.2 ① 修复&#xff1a;将 CLOSED 表内容从优先级队列中分离开来&#xff0c;原优先级队列作 OPEN 表&#xff0c;并用链表树隐式地代替 CLOSED 表&#xff0c;以…...

Maven,pom.xml,查找 子jar包

在IDEA打开pom.xml&#xff0c;会看到这里&#xff1a; 然后如果有需要&#xff0c;把相关的 子jar包 去掉 <dependency><groupId>XXX</groupId><artifactId>XXX</artifactId><exclusions><exclusion><artifactId>xxx</a…...

MySQL中数据库表的监控

MySQL中数据库表的监控 &#xff08;1&#xff09;查看数据库中当前打开了哪些表&#xff1a;show OPEN TABLES &#xff0c;如图6-1-5所示。另外&#xff0c;还可以通过show OPEN TABLES where In_use > 0过滤出当前已经被锁定的表。 查看数据库中表的状态&#xff1a;SHO…...

【S5PV210_视频编解码项目】裸机开发2:实现PWM波形驱动蜂鸣器

开发内容介绍 基于芯片自带的PWM定时器模块&#xff0c;实现对PWM波形的控制&#xff0c;掌握pwm定时器的驱动程序开发。 开发理论架构 1&#xff09;pwm波形的产生的条件&#xff1a;在指定的IO口输出一定频率和占空比的波形 2&#xff09;pwm波形频率的影响因素&#xff1…...

js进阶-深入对象-内置构造函数-包装类

一. 创建对象的三种方式 1.1 利用对象字面量创建对象 const p {name:"kebi" }1.2 利用 new Object 创建对象 // const obj new Object()// obj.uname maidi// console.log(obj)const obj new Object({ uname: maidi })1.3 利用构造函数创建对象 大写字母开头的…...

Linux作业

1.创建用户&#xff0c;用户名为user&#xff0c;user02密码均为123.com&#xff0c;创建完成后用tail查看用户是否存在。&#xff08;截图&#xff09;&#xff08;10分&#xff09; 2.在用户user主目录中用mkdir命令创建目录my.txt,在目录my.txt中创建文件a1.txt、1a1.txt、5…...

信息发布系统

特色功能 画布功能---可任意拖动各控件的播放位置及大小&#xff0c;可任意选择屏幕背景色或添加背景图 同步联屏---毫秒级同步功能 视频切换无黑屏 触摸查询系统 会议预定系统 终端显示-会议综合屏 终端显示-会议预定屏 终端显示-移动端 广告发布系统 硬件产品-智能终端 硬件…...

Dell Inspiron 戴尔灵越16plus7620升级M2硬盘

主机只支持一条M2硬盘&#xff0c;只能用更换更大容量硬盘的方式增加存储容量。 1、打开后盖&#xff0c;把新硬盘换上。旧硬盘装硬盘盒里&#xff0c;连上主机上。准备一个PE启动U盘&#xff0c; 2、开机不停地按F12&#xff0c;选U盘启动&#xff0c;进入PE&#xff0c;使用…...

视频怎么转mp4格式?分享3个宝藏方法,轻松学会

在当今数字化的时代&#xff0c;视频文件的格式多种多样&#xff0c;而MP4格式因其广泛的兼容性和高质量的压缩技术而备受青睐。然而&#xff0c;有时我们可能需要将其他格式的视频转换为MP4格式&#xff0c;以便在各种设备和平台上播放和分享视频。 在本文中&#xff0c;我们…...

Javascript 元二分搜索 | 单边二分查找(Meta Binary Search | One-Sided Binary Search)

元二分搜索&#xff08;Steven Skiena 在《算法设计手册》第 134 页中也称为单边二分搜索&#xff09;是二分搜索的一种修改形式&#xff0c;它以增量方式构建数组中目标值的索引。与普通二分搜索一样&#xff0c;元二分搜索需要 O(log n) 时间。 元二分搜索&#xff0c;也称为…...

柚见十三期(优化)

前端优化 加载匹配功能与加载骨架特效 骨架屏 : vant-skeleton index.vue中 /** * 加载数据 */ const loadData async () > { let userListData; loading.value true; //心动模式 if (isMatchMode.value){ const num 10;//推荐人数 userListData await myA…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...