当前位置: 首页 > news >正文

Educational Codeforces Round 163 (Rated for Div. 2)(A,B,C,D,E)

比赛链接

好忙好忙好忙,慢慢补老比赛的题解了。

这场没啥算法,全是思维。有也是BFS,屎。


A. Special Characters

题意:

您将得到一个整数 n n n

您的任务是构建一串大写的拉丁字母。此字符串中必须正好有 n n n 个特殊字符。让我们称一个字符为特殊字符,如果它恰好等于它的一个邻居。

例如,AAABAACC字符串中有 6 6 6 个特殊字符(位置为: 1 1 1 3 3 3 5 5 5 6 6 6 7 7 7 8 8 8 )。

打印任何合适的字符串或报告没有这样的字符串。

思路:

发现如果是 AABBAABB 这样子的序列的话,每个字符都会是特殊字符。但是这样的只能构造出 n n n 为偶数时候的情况。考虑能否构造出 n n n 为奇数时候的情况。

因为一个字符为特殊字符只和它的左右相邻的字符有关,再往前是什么它是不在意的。所以我们构造 n n n 为奇数时候的情况时,前面的部分仍然用类似 AABB 这种形式来构造,因为三个及以上连续的字符挨在一起时,中间的字符就不是特殊字符,不会产生贡献了,只有两头的字符会产生贡献,它就和两个字符的等价,所以我们不妨规定挨在一起的相同字符最多有两个

于是,如果前面的部分结尾为 A A AA AA 时,我们后面会补上 B B B,这时这个 B B B 不是特殊字符,因此这时凑不出奇数情况。然后我们继续向后补字符,如果我们补 A A A,这个 A A A 也不是特殊字符,凑不出奇数情况,如果补 B B B,这时补的两个 B B B 都同时成为了特殊字符,相当于上面说的 A A B B AABB AABB 形式,仍然凑不出奇数情况。

如果我们在补上 B A BA BA,然后继续向后补字符,就会重复上面的讨论。因此无论怎么补,我们都凑不出奇数情况。这就意味着 n n n 为奇数时是无解的。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=55;int T,n;
char s[maxn];int main(){cin>>T;while(T--){cin>>n;if(n&1){cout<<"NO"<<endl;continue;}else cout<<"YES"<<endl;for(int i=1;i<=n;i+=4)s[i]=s[i+1]='A';for(int i=3;i<=n;i+=4)s[i]=s[i+1]='B';for(int i=1;i<=n;i++)cout<<s[i];cout<<endl;}return 0;
}

B. Array Fix

题意:

您将得到一个长度为 n n n 的整数数组 a a a

您可以执行以下操作任意次数(可能为零):取数组 a a a 中至少为 10 10 10 的任何元素,将其删除,然后在相同位置插入该元素所包含的数字,按它们出现在该元素中的顺序。例如:

  • 如果我们将此操作应用于数组 [ 12 , 3 , 45 , 67 ] [12, 3, 45, 67] [12,3,45,67] 的第 3 3 3 个元素,则数组将变为 [ 12 , 3 , 4 , 5 , 67 ] [12, 3, 4, 5, 67] [12,3,4,5,67]

  • 如果我们将此操作应用于数组 [ 2 , 10 ] [2, 10] [2,10] 的第 2 2 2 个元素,则数组将变为 [ 2 , 1 , 0 ] [2, 1, 0] [2,1,0]

您的任务是确定是否可以使用上述操作任意次数使 a a a 按非降序排序。换句话说,您必须确定是否可以将数组 a a a 转换为 a 1 ≤ a 2 ≤ ⋯ ≤ a k a_1 \le a_2 \le \dots \le a_k a1a2ak ,其中 k k k 是数组 a a a 的当前长度。

思路:

先注意一下题目说了 0 ≤ a i ≤ 99 0 \le a_i \le 99 0ai99,因此 a i a_i ai 最多就是个两位数。

因为是非降序的,所以从某一位开始,也许后面就都变成了两位及以上的数,这时这些数不能被拆数位,否则变成一位数之后就会变小。反之,在此之前,所有的数都得是一位数,否则某个两位数后面出现了一位数,就不满足非降序的条件了。因此我们找到这个分界点,把分界点之前的所有数都拆掉,然后看满不满足条件就行了。

根据上面的分析,这个分界点之后的数都是不拆数位就满足非降序的,所以我们从后向前找到第一个不满足条件的位置,这个位置就是分界点了。从这个位置向前拆数。一个数拆开后,个位放在后面,十位放在前面。所以我们没必要真的把两个新的数插入到当前位置,这样比较麻烦。

判断这个数是否和后一个数满足非降序的关系,我们直接看一下当前数的十位不小于个位,并且个位不小于后一个数,之后用十位代替这个数,再向前找即可。

code:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=55;int T,n,a[maxn];int main(){cin>>T;while(T--){cin>>n;for(int i=1;i<=n;i++)cin>>a[i];int idx;for(idx=n-1;idx>=1;idx--)if(a[idx]>a[idx+1])break;//		cout<<"***"<<idx<<endl;bool flag=true;for(int i=idx;i>=1;i--){if(a[i]/10>a[i]%10 || a[i]%10>a[i+1]){flag=false;break;}if(a[i]>10)a[i]/=10;}puts((flag)?"YES":"NO");}return 0;
}

C. Arrow Path

题意:

有一个网格,由 2 2 2 行和 n n n 列组成。这些行从上到下从 1 1 1 2 2 2 进行编号。列从左到右从 1 1 1 n n n 进行编号。网格的每个单元格都包含一个指向左侧或右侧的箭头。没有箭头指向网格外。

有一个机器人在单元格 ( 1 , 1 ) (1, 1) (1,1) 中启动 。每一秒钟,都有以下两个动作相继发生:

  1. 首先,机器人向左、向右、向下或向上移动(它不能尝试走出网格,也不能跳过这次移动

  2. 然后,它沿着放置在当前单元格(移动后结束的单元格)中的箭头移动。

您的任务是确定机器人是否可以到达单元 ( 2 , n ) (2, n) (2,n)

思路:

比较明显的BFS。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#define pii pair<int,int>
using namespace std;
const int maxn=2e5+5;int T,n;
string mp[5];int fx[]={1,-1,0,0},fy[]={0,0,1,-1};int main(){cin>>T;while(T--){cin>>n;cin>>mp[1]>>mp[2];mp[1]=" "+mp[1];mp[2]=" "+mp[2];queue<pii> q;vector<vector<bool> > vis(5,vector<bool>(n+5,false));q.push(pii(1,1));vis[1][1]=true;bool flag=false;while(!q.empty()){int ux=q.front().first,uy=q.front().second;q.pop();if(ux==2 && uy==n){flag=true;break;}for(int i=0,x,y;i<4;i++){x=ux+fx[i],y=uy+fy[i];if(x<1 || x>2 || y<1 || y>n)continue;if(mp[x][y]=='<')y--;else y++;if(!vis[x][y]){q.push(pii(x,y));vis[x][y]=true;}}}puts((flag)?"YES":"NO");}return 0;
}

D. Tandem Repeats?

题意:

您将得到一个字符串 s s s ,它由小写的拉丁字母以及问号组成。

串联重复序列(tandem repeat)是指长度为偶数的串,满足其前一半等于其后一半。

您的目标是将每个问号替换为某个小写拉丁字母,求出最大可能的串联重复序列子串的长度。

思路:

考虑到这个串联重复序列比如 a b c a b c abcabc abcabc,说白了就是第 1 1 1 个字符向后 3 3 3 个长度的子串与第 4 4 4 个字符向后 3 3 3 个长度的子串相同。那么一定第 2 2 2 个字符向后 2 2 2 个长度的子串与第 5 5 5 个字符向后 2 2 2 个长度的子串相同,前者可以由后者推出来。

所以我们设 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从第 i i i 个字符开始的子串和第 j j j 个字符开始的子串最长匹配长度是多少。当第 i i i 个字符和第 j j j 个字符相同时(两个字符真的相同,或者其中一个为 ? ? ?,可以万能匹配), d p [ i ] [ j ] dp[i][j] dp[i][j] 就可以从 d p [ i + 1 ] [ j + 1 ] + 1 dp[i+1][j+1]+1 dp[i+1][j+1]+1 推过来。因为是从 i + 1 , j + 1 i+1,j+1 i+1,j+1 推来的,因此 i , j i,j i,j 的枚举需要反着,从 n n n 1 1 1

不过 i ∼ i + d p [ i ] [ j ] − 1 i\sim i+dp[i][j]-1 ii+dp[i][j]1 j ∼ j + d p [ i ] [ j ] − 1 j\sim j+dp[i][j]-1 jj+dp[i][j]1 两个区间的子串匹配不一定就是串联重复序列,它需要正好是 i + d p [ i ] [ j ] − 1 = j − 1 i+dp[i][j]-1=j-1 i+dp[i][j]1=j1 j − i = d p [ i ] [ j ] j-i=dp[i][j] ji=dp[i][j](也就是前后两个子串正好相接)。 d p [ i ] [ j ] dp[i][j] dp[i][j] 如果大于 j − i j-i ji,这时可以直接截取长为 j − i j-i ji 的一段作为串联重复序列,反之就一定无法成为串联重复序列。

code:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;int T,n;
string s;int main(){cin>>T;while(T--){cin>>s;n=s.length();s=" "+s;vector<vector<int> > dp(n+5,vector<int>(n+5,0));for(int i=n;i>=1;i--){for(int j=i-1;j>=1;j--){if(s[i]=='?' || s[j]=='?' || s[i]==s[j])dp[i][j]=dp[i+1][j+1]+1;}}int ans=0;for(int i=1;i<=n;i++){for(int j=1;j<i;j++){int t=dp[i][j];if(t>=i-j)t=i-j;else continue;ans=max(ans,t);}}cout<<ans*2<<endl;}return 0;
}

E. Clique Partition

题意:

给出两个整数 n n n k k k 。在 n n n 个顶点上有一个图,编号从 1 1 1 n n n ,它最初没有边。你必须给每个顶点分配一个整数,设 a i a_i ai 是顶点 i i i 上的整数。所有 a i a_i ai 都应该是从 1 1 1 n n n 的不同整数。

指定整数后,对于每对顶点 ( i , j ) (i, j) (i,j) ,如果 ∣ i − j ∣ + ∣ a i − a j ∣ ≤ k |i - j| + |a_i - a_j| \le k ij+aiajk ,则在它们之间添加一条边。

您的目标是创建一个图,该图可以划分为最小可能(对于给定的 n n n k k k 值)数量的团(Clique)。

图的每个顶点应该恰好属于一个团。

团是一组顶点,其中的每一对顶点都与一条边相连。由于布莱德斯特没有真正提高他的编程技能,他无法解决问题 “给一个图,将其划分为最小数量的团”。因此,我们要求您打印分区本身。

思路:

构造题,构造方法不好想。如果想出了构造方法,写是比较容易的。

要团的个数最少,那么就考虑让团包含的点最多。因为 a i a_i ai 互不重复,所以 ∣ a i − a j ∣ |a_i - a_j| aiaj 至少会是 1 1 1,那么 ∣ i − j ∣ |i - j| ij 最大就是 k − 1 k-1 k1,这时 j − i + 1 j-i+1 ji+1 最大就是 k k k。也就是说,团最多可能包含 k k k 个点

考虑如果一个团能否塞入 k k k 个点,不妨使用顶点 1 ∼ k 1\sim k 1k。而且为了不影响到其他团,所以我们尽量给它们分配 1 ∼ k 1\sim k 1k 的编号。

首先第 1 1 1 个数和第 k k k 个数必须差 1 1 1,否则这一对一定不满足条件。同理,第 1 1 1 个数和第 k − 1 k-1 k1 个数必须差 ≤ 2 \le 2 2,第 2 2 2 个数和第 k k k 个数必须差 ≤ 2 \le 2 2。考虑把第一个数置为中间数 k / 2 k/2 k/2,这样中间数两边都有空间,我们把中间数前面的数降序放在前半部分,中间数后面的数降序放在后半部分。即: k / 2 , k / 2 − 1 , … , 1 , k , k − 1 … , k / 2 + 2 , k / 2 + 1 k/2,k/2-1,\dots,1,k,k-1\dots,k/2+2,k/2+1 k/2,k/21,,1,k,k1,k/2+2,k/2+1

还是比较好验证这么构造的正确性的:前半部分一定满足条件,后半部分一定满足条件。前半部分取一个数,后半部分取一个数的情况也满足条件。综合一下,所有情况都满足条件。

这样 1 ∼ k 1\sim k 1k 的情况就构造出来了,因为相对位置和相对大小是不变的,所以后面的每个团也是这样构造就可以了。

有时候会剩下一些点不足 k k k 个。构造方式同理,把上面的序列截掉后面部分即可,大概就是这样:

  1. 如果 n ≤ k / 2 n\le k/2 nk/2,则 n , n − 1 , … , 1 n,n-1,\dots,1 n,n1,,1
  2. 如果 k / 2 < n < k k/2\lt n\lt k k/2<n<k,则 k / 2 , k / 2 − 1 , … , 1 , n , n − 1 … , k / 2 + 2 , k / 2 + 1 k/2,k/2-1,\dots,1,n,n-1\dots,k/2+2,k/2+1 k/2,k/21,,1,n,n1,k/2+2,k/2+1

团的个数也就很显然了,是 ⌈ n k ⌉ \left\lceil\dfrac nk\right\rceil kn。第 i i i 个点所属的团显然就是第 ⌈ i k ⌉ \left\lceil\dfrac ik\right\rceil ki 个团。

code:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=45;int T,n,k;
int a[maxn];int main(){cin>>T;while(T--){cin>>n>>k;for(int i=1,len=k;i<=n;i+=k){if(i+k-1<=n){for(int j=i;j<i+len;j++)a[j]=j;reverse(a+i,a+i+len/2);reverse(a+i+len/2,a+i+len);}else {if(i+len/2>=n){for(int j=i;j<=n;j++)a[j]=j;reverse(a+i,a+n+1);}else {for(int j=i;j<=n;j++)a[j]=j;reverse(a+i,a+i+len/2);reverse(a+i+len/2,a+n+1);}}}
//		cout<<"***";for(int i=1;i<=n;i++)printf("%d ",a[i]);puts("");cout<<(n+k-1)/k<<endl;for(int i=1;i<=n;i++){printf("%d ",(i+k-1)/k);}puts("");}return 0;
} 

相关文章:

Educational Codeforces Round 163 (Rated for Div. 2)(A,B,C,D,E)

比赛链接 好忙好忙好忙&#xff0c;慢慢补老比赛的题解了。 这场没啥算法&#xff0c;全是思维。有也是BFS&#xff0c;屎。 A. Special Characters 题意&#xff1a; 您将得到一个整数 n n n 。 您的任务是构建一串大写的拉丁字母。此字符串中必须正好有 n n n 个特殊字…...

索引常见面试题

面试中&#xff0c;MySQL 索引相关的问题基本都是一系列问题&#xff0c;都是先从索引的基本原理&#xff0c;再到索引的使用场景&#xff0c;比如&#xff1a; 索引底层使用了什么数据结构和算法&#xff1f;为什么 MySQL InnoDB 选择 Btree 作为索引的数据结构&#xff1f;什…...

【Unity】旋转的尽头是使用四元数让物体旋转

// 导入必要的命名空间 using System.Collections; using System.Collections.Generic; using UnityEngine;// 创建一个名为 RotateObj 的 MonoBehaviour 类&#xff0c;该类可以附加到 Unity 中的游戏对象上并控制其行为 public class RotateObj : MonoBehaviour {// Update 函…...

哔哩哔哩秋招Java二面

前言 作者&#xff1a;晓宜 个人简介&#xff1a;互联网大厂Java准入职&#xff0c;阿里云专家博主&#xff0c;csdn后端优质创作者&#xff0c;算法爱好者 一面过后面试官叫我别走&#xff0c;然后就直接二面&#xff0c;二面比较简短&#xff0c;记录一下&#xff0c;希望可以…...

OSPF特殊区域(stub\nssa)

stub区域——只有1类、2类、3类&#xff1b;完全stub区域——只有1类、2类 NSSA区域&#xff1a;本区域将自己引入的外部路由发布给其他区域&#xff0c;但不需要接收其他区域的路由 在NSSA区域的路由器上&#xff0c;引入外部路由时&#xff0c;不会转换成5类LSA&#xff0c…...

全球首位AI程序员诞生,将会对程序员的影响有多大?

随着全球首位AI程序员Devin的诞生&#xff0c;人工智能技术在编程领域的应用引发了广泛的讨论和思考。这一事件不仅标志着AI技术在软件开发领域的一大步进展&#xff0c;也引起了人们对未来编程职业发展的广泛关注。那么&#xff0c;AI程序员的出现究竟会对程序员的职业生涯产生…...

【晴问算法】提高篇—动态规划专题—最长上升子序列

题目描述 现有一个整数序列a1,a2,...,an​​​​​​&#xff0c;求最长的子序列&#xff08;可以不连续&#xff09;&#xff0c;使得这个子序列中的元素是非递减的。输出该最大长度。 输入描述 第一行一个正整数n&#xff08;1≤n≤100​​​​&#xff09;&#xff0c;表示序…...

天软特色因子看板(2024.3第5期)

该因子看板跟踪天软特色因子A08006(近一月日度买卖压力2)&#xff0c;该因子为近一个月个股每日的相对价格位置&#xff0c;用以刻画股票所受买卖压力&#xff0c;取作 介于0~1间&#xff0c;指标值越大&#xff0c;反映股票在价格相对高位停留的时间越长&#xff0c;所面临的买…...

静态网络配置

一、查看网络命令 1.命令行查看网络配置 1、查看ip\硬件设备-网卡 ifconfig -a ifconfig ens160 网卡名称 ip addr show ip addr show ens160 nmcli device show ens160 nmcli con up ens160 2、主机名称 hostname hostname hfj.huaxia.com 3、查看路由和网关 rou…...

多种智能搜索算法可视化还原 3D 魔方

2024/03/19&#xff1a;程序更新说明&#xff08;文末程序下载链接已更新&#xff09; 版本&#xff1a;v1.0 → v1.2 ① 修复&#xff1a;将 CLOSED 表内容从优先级队列中分离开来&#xff0c;原优先级队列作 OPEN 表&#xff0c;并用链表树隐式地代替 CLOSED 表&#xff0c;以…...

Maven,pom.xml,查找 子jar包

在IDEA打开pom.xml&#xff0c;会看到这里&#xff1a; 然后如果有需要&#xff0c;把相关的 子jar包 去掉 <dependency><groupId>XXX</groupId><artifactId>XXX</artifactId><exclusions><exclusion><artifactId>xxx</a…...

MySQL中数据库表的监控

MySQL中数据库表的监控 &#xff08;1&#xff09;查看数据库中当前打开了哪些表&#xff1a;show OPEN TABLES &#xff0c;如图6-1-5所示。另外&#xff0c;还可以通过show OPEN TABLES where In_use > 0过滤出当前已经被锁定的表。 查看数据库中表的状态&#xff1a;SHO…...

【S5PV210_视频编解码项目】裸机开发2:实现PWM波形驱动蜂鸣器

开发内容介绍 基于芯片自带的PWM定时器模块&#xff0c;实现对PWM波形的控制&#xff0c;掌握pwm定时器的驱动程序开发。 开发理论架构 1&#xff09;pwm波形的产生的条件&#xff1a;在指定的IO口输出一定频率和占空比的波形 2&#xff09;pwm波形频率的影响因素&#xff1…...

js进阶-深入对象-内置构造函数-包装类

一. 创建对象的三种方式 1.1 利用对象字面量创建对象 const p {name:"kebi" }1.2 利用 new Object 创建对象 // const obj new Object()// obj.uname maidi// console.log(obj)const obj new Object({ uname: maidi })1.3 利用构造函数创建对象 大写字母开头的…...

Linux作业

1.创建用户&#xff0c;用户名为user&#xff0c;user02密码均为123.com&#xff0c;创建完成后用tail查看用户是否存在。&#xff08;截图&#xff09;&#xff08;10分&#xff09; 2.在用户user主目录中用mkdir命令创建目录my.txt,在目录my.txt中创建文件a1.txt、1a1.txt、5…...

信息发布系统

特色功能 画布功能---可任意拖动各控件的播放位置及大小&#xff0c;可任意选择屏幕背景色或添加背景图 同步联屏---毫秒级同步功能 视频切换无黑屏 触摸查询系统 会议预定系统 终端显示-会议综合屏 终端显示-会议预定屏 终端显示-移动端 广告发布系统 硬件产品-智能终端 硬件…...

Dell Inspiron 戴尔灵越16plus7620升级M2硬盘

主机只支持一条M2硬盘&#xff0c;只能用更换更大容量硬盘的方式增加存储容量。 1、打开后盖&#xff0c;把新硬盘换上。旧硬盘装硬盘盒里&#xff0c;连上主机上。准备一个PE启动U盘&#xff0c; 2、开机不停地按F12&#xff0c;选U盘启动&#xff0c;进入PE&#xff0c;使用…...

视频怎么转mp4格式?分享3个宝藏方法,轻松学会

在当今数字化的时代&#xff0c;视频文件的格式多种多样&#xff0c;而MP4格式因其广泛的兼容性和高质量的压缩技术而备受青睐。然而&#xff0c;有时我们可能需要将其他格式的视频转换为MP4格式&#xff0c;以便在各种设备和平台上播放和分享视频。 在本文中&#xff0c;我们…...

Javascript 元二分搜索 | 单边二分查找(Meta Binary Search | One-Sided Binary Search)

元二分搜索&#xff08;Steven Skiena 在《算法设计手册》第 134 页中也称为单边二分搜索&#xff09;是二分搜索的一种修改形式&#xff0c;它以增量方式构建数组中目标值的索引。与普通二分搜索一样&#xff0c;元二分搜索需要 O(log n) 时间。 元二分搜索&#xff0c;也称为…...

柚见十三期(优化)

前端优化 加载匹配功能与加载骨架特效 骨架屏 : vant-skeleton index.vue中 /** * 加载数据 */ const loadData async () > { let userListData; loading.value true; //心动模式 if (isMatchMode.value){ const num 10;//推荐人数 userListData await myA…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...