当前位置: 首页 > news >正文

什么是神经网络?

一、什么是神经网络?

神经网络又称人工神经网络,是一种基于人脑功能模型的计算架构,因此称之为“神经”。神经网络由一组称为“节点”的处理单元组成。这些节点相互传递数据,就像大脑中的神经元相互传递电脉冲一样。

神经网络在机器学习中使用;机器学习是指一种无需明确指令即可学习的计算机程序。具体来说,神经网络在深度学习中使用;深度学习是一种先进的机器学习类型,无需人工干预即可从无标签数据中得出结论。例如,在神经网络基础上建立的深度学习模型在获得足够的训练数据后,就能识别出照片中从未见过的物品。

神经网络使多种类型的人工智能 (AI) 成为可能。大型语言模型 (LLM)(如 ChatGPT)、AI 图像生成器(如 DALL-E)和预测式 AI 模型都在一定程度上依赖于神经网络。

二、神经网络如何工作?

神经网络由一系列节点组成。节点至少分布在三个层上。这三个层分别是:

  • 输入层
  • “隐藏”层
  • 输出层

神经网络至少必须包含这三个层。除了输入层和输出层,神经网络还可以有多个隐藏层。

无论属于哪一层,每个节点都会对从上一层节点(或输入层)接收到的输入执行某种处理任务或功能。基本上,每个节点都包含一个数学公式,公式中每个变量的权重各不相同。如果将该数学公式应用于输入产生的输出超过了某个阈值,该节点就会将数据传递给神经网络的下一层。如果输出低于阈值,则不会将数据传递给下一层。

想象一下,Acme 公司有一个等级森严的会计部。Acme 会计部经理级员工批准低于 1,000 美元的支出,董事批准低于 10,000 美元的支出,首席财务官批准任何超过 10,000 美元的支出。Acme 公司其他部门的员工在提交费用时,首先要提交给会计经理。任何超过 1000 美元的支出都会转给董事,而低于 1000 美元的支出则留在经理一级,以此类推。

Acme 公司会计部的运作方式有点像神经网络。员工提交费用报告就好比是神经网络的输入层。每个经理和总监就好比是神经网络中的一个节点。

就像一位会计经理在将费用报告交给会计主管之前,可能会请另一位经理协助解读报告一样,神经网络也可以用多种方式构建。节点可进行多向通信。

三、有哪些类型的神经网络?

神经网络的节点和层数没有限制,这些节点几乎能够以任何方式进行交互。正因如此,神经网络的类型也在不断增加。不过,它们大致可以分为以下几类:

  • 浅层神经网络通常只有一个隐藏层
  • 深度神经网络有多个隐藏层

与深度神经网络相比,浅层神经网络速度更快,所需的处理能力更低,但无法像深度神经网络那样执行大量复杂任务。

下面是目前可能使用的神经网络类型的不完整列表:

感知器神经网络是一种简单的浅层网络,有一个输入层和一个输出层。

多层感知器神经网络增加了感知器网络的复杂性,并包含一个隐藏层。

前馈神经网络只允许其节点将信息传递给正向节点。

循环神经网络可以倒退,允许某些节点的输出影响之前节点的输入。

模块化神经网络将两个或更多个神经网络组合在一起,以获得输出结果。

径向基函数神经网络节点使用一种称为径向基函数的特殊数学函数。

液体状态机神经网络的特点是节点之间是随机连接的。

残差神经网络通过一个称为身份映射的过程,将早期层的输出与后期层的输出结合起来,从而使数据向前跳转。

四、什么是 Transformer 神经网络?

Transformer 神经网络之所以值得强调,是因为它们在当今广泛使用的 AI 模型中占据了极其重要的位置。

Transformer 模型于 2017 年首次提出,它是一种神经网络,使用一种名为“自注意力机制”的技术来考虑序列中元素的上下文,而不仅仅是元素本身。通过自注意力机制,它们甚至可以检测到数据集各部分之间的微妙联系。

这种能力使它们非常适合分析(举例来说)文本的句子和段落,而不仅仅是单个单词和短语。在 Transformer 模型被开发出来之前,处理文本的 AI 模型在它们处理到句子末尾时,往往会“忘记”了句子的开头,结果是结合的短语和观点对于人类读者来说是没有意义。然而,Transformer 模型能够以更自然的方式处理和生成人类语言。

Transformer 模型是生成式 AI 不可或缺的组成部分,特别是可以根据人类的任意提示生成文本的 LLM。

五、神经网络的历史

神经网络的历史其实很悠久。神经网络的概念可以追溯到 1943 年的一篇数学论文,该论文对大脑的工作方式进行了建模。在 20 世纪 50 年代和 60 年代,计算机科学家开始尝试构建简单的神经网络,但这一概念最终失宠。在 20 世纪 80 年代,这个概念再次兴起,到 20 世纪 90 年代,神经网络在 AI 研究中得到广泛应用。

不过,直到超高速处理能力、海量数据存储能力和计算资源出现后,神经网络才得以发展到今天的地步,能够模仿甚至超越人类的认知能力。这一领域仍在不断发展;目前使用的最重要的神经网络类型之一 Transformer 可以追溯到 2017 年。

相关文章:

什么是神经网络?

一、什么是神经网络? 神经网络又称人工神经网络,是一种基于人脑功能模型的计算架构,因此称之为“神经”。神经网络由一组称为“节点”的处理单元组成。这些节点相互传递数据,就像大脑中的神经元相互传递电脉冲一样。 神经网络在…...

基于Python的图形用户界面设计及应用

基于Python的图形用户界面设计及应用 摘要:随着信息技术的飞速发展,图形用户界面(GUI)已成为现代软件不可或缺的一部分。Python作为一种简洁、易读且功能强大的编程语言,提供了多种GUI开发工具包,如Tkinte…...

python网络爬虫实战教学——urllib的使用(1)

文章目录 专栏导读1、前言2、urllib的使用3、发送请求3.1 urlopen3.2 request 专栏导读 ✍ 作者简介:i阿极,CSDN 数据分析领域优质创作者,专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》,本专栏针对…...

简述归并排序

归并排序 特点: 高效稳定时间复杂度最佳/平均/最差: O(N log N) 递归算法有专门的公式来计算时间复杂度 空间复杂度 O(N) 因为开辟了临时的tem_arr数组 一个静态的演示图(from leetcode) 一个动态的演示图 合并实现使用merge函数 inline void merge(v…...

HTML实现卷轴动画完整源码附注释

动画效果截图 页面的html结构代码 <!DOCTYPE html> <html> <head lang=...

sh: 1: dtc: not found

报错&#xff1a; bl31.bin size: 41632 u-boot-nodtb.bin size: 815816 ai_robot.dtb size: 30552 ./mkimage_uboot -E -p 0x3000 -f u-boot-ai-robot.its u-boot-ai-robot.itb sh: 1: dtc: not found ./mkimage_uboot: Cant open u-boot-ai-robot.itb.tmp: No such file …...

laravel 表单验证的 exists、unique 去除软删除字段的校验

use Illuminate\Validation\Rule; exists 去除软删除字段的校验 $validator \Validator::make($data, [phone_new > [Rule::exists(users, phone)->whereNull(deleted_at),]], [phone_new.exists > 手机号不存在,]);unique 去除软删除字段的校验 // 新增 email>r…...

【PHP + 代码审计】函数详解2.0

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…...

宠物智能喂食机方案设计

我们都知道&#xff0c;现如今养宠物的人群已经很多了&#xff0c;主要是青年人居多&#xff0c;他们在独自漂泊的在外的工作&#xff0c;免不了情感泛滥&#xff0c;养一些小动物也是在预料之中。但由于工作或者其他各种因数&#xff0c;养宠人不可时时刻刻在家&#xff0c;对…...

测试直播打赏需要考虑哪些测试要点?

1.功能测试&#xff1a; 1、检查打赏功能是否正确 &#xff1a;检查打赏操作是否可以正常进行 2、 赞赏余额是否正确&#xff1a; 检查赞赏者和被赞赏者的余额是否正确 3、赞赏交易记录是否正确&#xff1a; 检查赞赏者和被赞赏者的交易记录是否正确&#xff1b; 4、检查赞…...

Python练习(续)

练习1:用户登录注册案例 import sysidname {test:123456}print(""" 英雄联盟商城登录界面~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~1. 用户登录2. 新用户注册3. 退出系统~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ …...

发布镜像到阿里云仓库

发布上一篇Dockerfile实战-自定义的centos镜像。 1、登录阿里云 2、找到容器镜像服务 3、创建命令空间 4、创建镜像仓库 5、点击进入这个镜像仓库&#xff0c;可以看到所有的信息 6、根据操作指南测试推送发布 6.1登录阿里云 [rootzhoujunru home]# docker login --usernam…...

web蓝桥杯真题:灯的颜色变化

代码及注释&#xff1a; // TODO&#xff1a;完善此函数 显示红色颜色的灯 function red() { //将红色图片元素display显示出来&#xff0c;其他隐藏document.querySelector(#defaultlight).style.display nonedocument.querySelector(#redlight).style.display inline-b…...

通过docker容器安装zabbix6.4.12图文详解(监控服务器docker容器)

目录 一、相关环境及镜像二、zabbix-server服务端部署1.使用docker创建zabbix-server服务端(1). 创建专用于Zabbix组件容器的网络(2). 启动空的MySQL服务器实例(3). 启动Zabbix Java网关实例(4). 启动Zabbix服务器实例并将实例与创建的MySQL服务器实例链接(5). 启动Zabbix Web界…...

算法打卡day21|回溯法篇01|理论知识,Leetcode 77.组合

回溯法理论知识 回溯法也可以叫做回溯搜索法&#xff0c;它是一种搜索的方式。回溯是递归的副产品&#xff0c;只要有递归就会有回溯。所以回溯函数也就是递归函数&#xff0c;指的都是一个函数。 回溯法的效率 回溯法并不是什么高效的算法。因为回溯的本质是穷举&#xff0c;…...

C++ 输入输出

输入 1.1 cin >> str; 遇到“空格”、“TAB”、“回车”就停止 string str; cin >> str;1.2 getline(cin, str) 可用于输入一行数据&#xff0c;遇到空格不会停止&#xff0c;读入string字符中 便于读取一行一行的数据 while(getline(cin, str)){if(str "EN…...

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博主所有FPGA工程项目-->汇总目录本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收图像缩放应用本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS…...

【gpt实践】50个提升工作效率的GPT指令

收集整理了50个工作不同场景中可能会用到的gpt指令&#xff0c;希望对大家有帮助。 1. 用「532规则」定制月度宣传规划 提示&#xff1a;“对于我的 [产品/服务] 在 [社交媒体平台上 ]定位 [我的目标受众]”&#xff0c;使用 5-3-2 规则制定 1 个月的社交媒体内容计划。” Pro…...

基于Springboot的高校竞赛管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的高校竞赛管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…...

论文阅读——EarthPT

EarthPT: a time series foundation model for Earth Observation 一个Earth Observation (EO)预训练的Transformer。EarthPT是一个7亿参数解码Transformer基础模型&#xff0c;以自回归自监督方式进行训练&#xff0c;并专门针对EO用例进行开发。我们证明了EarthPT是一个有效的…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...