当前位置: 首页 > news >正文

【论文笔记合集】LSTNet之循环跳跃连接

在这里插入图片描述

本文作者: slience_me


LSTNet 循环跳跃连接

文章仅作为个人笔记
论文链接

文章原文

LSTNet [25] introduces convolutional neural networks (CNNs) with recurrent-skip
connections to capture the short-term and long-term temporal patterns.
LSTNet [25]引入了具有循环跳跃连接的卷积神经网络(CNN)来捕获短期和长期的时间模式。

这句话提到了LSTNet,它是一种用于时间序列预测的方法。LSTNet引入了卷积神经网络(CNNs)和递归跳跃连接(recurrent-skip connections),以捕捉时间序列数据中的短期和长期时间模式。

具体来说,LSTNet使用了卷积神经网络来处理时间序列数据,这使得模型能够有效地捕捉数据中的局部模式和趋势。卷积层在时间维度上进行滑动窗口的操作,从而可以识别数据中的局部特征。

此外,LSTNet还引入了递归跳跃连接,这是一种从当前时间步向前或向后跳跃的连接方式,以便模型可以在预测时考虑到更长的时间跨度。这种连接方式有助于模型捕捉到时间序列中的长期依赖关系和趋势。

通过结合卷积神经网络和递归跳跃连接,LSTNet能够有效地捕捉时间序列数据中的短期和长期时间模式,从而提高了模型的预测性能。


在这里插入图片描述

递归跳跃连接是一种连接方式,它在神经网络中的不同层之间建立起直接的跳跃连接,从而使得信息能够更快速地传递和跨越多个时间步。这种连接方式有助于捕捉到时间序列中的长期依赖关系和趋势。

举个例子,假设我们有一个时间序列预测的神经网络模型,其中包含了多个循环层(recurrent layers)。每个循环层都会接收上一个时间步的隐藏状态,并根据当前时间步的输入和上一个时间步的隐藏状态来生成当前时间步的输出和隐藏状态。

在这种情况下,递归跳跃连接可以是指在不同循环层之间建立直接的连接,使得信息可以更快速地跨越多个时间步。例如,第一个循环层的隐藏状态可以直接传递到第三个循环层,而不是只传递到下一个循环层。这样,模型就可以在更远的时间步上考虑到更长期的依赖关系,而不受中间循环层的限制。

递归跳跃连接的存在可以提高模型对时间序列数据的理解和预测能力,特别是在处理长期依赖关系和趋势方面。

相关文章:

【论文笔记合集】LSTNet之循环跳跃连接

本文作者: slience_me LSTNet 循环跳跃连接 文章仅作为个人笔记 论文链接 文章原文 LSTNet [25] introduces convolutional neural networks (CNNs) with recurrent-skip connections to capture the short-term and long-term temporal patterns. LSTNet [25]引入…...

数据库关系运算理论:关系数据操作与关系完整性概念解析

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…...

Linux基础开发工具之yum与vim

1. Linux软件包管理器——yum 1.1 什么是软件包? 在Linux下安装软件, 一个通常的办法是下载到程序的源代码, 并进行编译, 得到可执行程序. 但是这样太麻烦了, 于是有些人把一些常用的软件提前编译好, 做成软件包(可以理解成windows上的安装程序)放在一个服务器上, …...

【正则表达式】正则表达式里使用变量

码 const shuai No My Name Is ShuaiGe.match(new RegExp(shuai, gi)); //↑↑↑↑↑↑↑↑ //等同于 //↓↓↓↓↓↓↓↓ /No/gi.test(My Name Is ShuaiGe)用作领域 搜索的字符动态改变,例如↓模糊搜索例: 一个文本宽,输入文本模糊搜索用…...

Java中的可变参数

java提供了可变参数这个语法。 可变参数本质为数组。 一般可变参数应用于形参中。用于接收实参。 此时实参可以有多种形式。 一种是最正常的,实参为数组名。 public class Date1 {public void one(int ... arr){int sum0;for (int x:arr){sumx;}System.out.pri…...

如何实现在固定位置的鼠标连点

鼠大侠的鼠标连点功能是免费的 浏览器搜索下载鼠大侠,指定连点间隔和启动快捷键 点击设置,指定点击位置...

15|BabyAGI:根据气候变化自动制定鲜花存储策略

一种新型的代理——Autonomous Agents(自治代 理或自主代理), 在 LangChain 的代理、工具和记忆这些组件的支持下,它们能够在无需外部干预的情况下自主 运行,这在真实世界的应用中具有巨大的价值。 AutoGPT 它的主要…...

二进制安全找实习记录

就安全岗而言,这里笔者仅仅面试了腾讯的科恩实验室内核安全和浏览器安全(其它的就面了一下前后端开发,这就不说了,笔者也没打算搞开发),然后倒在了一面。然后有的问题忘记了,仅仅记录一下自己回…...

列表(list)篇(一)

文章目录 2.1 创建列表2.2 append()函数2.3 clear()函数2.4 copy()函数2.5 count()函数2.6 del2.7 enumerate()函数2.8 extend()函数2.9 index()函数 2.1 创建列表 在Python中,列表(list)是一种基础的数据结构,可以包含不同类型的…...

spring整合Sentinel

安装sentinel: 执行命令; java -jar sentinel-dashboard-1.8.6.jar 注:sentinel的默认端口为8080,容易出现tomcat的冲突。 当端口冲突,可以使用该指令修改sentinel的端口 默认账号和密码都为sentinel Springcloud整合sentinel:…...

MFC 自定义分发消息方法

重点: 1.创建一个专门自定义消息的头文件 constValue.h #define WM_MY_CUSTOM_MESSAGE (WM_USER 101) // 自定义消息ID 2.在你需要发送和接收该消息的类中,首先注册这个自定义消息。一般在窗口类(如CWnd派生类)的OnInitDialog…...

FPGA的应用方向

文章目录 FPGA是什么?FPGA的发展FPGA有哪些公司国内的FPGA发展如何?国内FPGA应用情况怎样?FPGA的发展方向有哪些?FPGA在工业界的应用有哪些?FPGA在科研界的方向有哪些?FPGA在高频信号处理的应用场景FPGA应用…...

河南大学大数据平台技术实验报告二

大数据平台技术课程实验报告 实验二:HDFS操作实践 姓名:杨馥瑞 学号:2212080042 专业:数据科学与大数据技术 年级:2022级 主讲教师:林英豪 实验时间:2024年3月15日3点 至 2024年3月15日4点40 …...

Spring Cloud Gateway如何实现熔断

Spring Cloud Gateway熔断集成 熔断应用: 金融市场中的熔断机制:在金融交易系统中,熔断机制(Circuit Breaker)是一种市场保护措施,旨在预防市场剧烈波动时可能导致的系统性风险。当某个基准指数&#xff08…...

2403d,d的com哪里错了

原文 感谢任意见解.细节: >dmd --version DMD64 D Compiler v2.107.0参考: ComObject类 IUnknown接口 我只使用了ComObject类和隐式继承了IUnknown接口,用用ImportC编译并包含以下内容的comheaders.c编写了一些COM测试代码. #define WINVER 0x0A00 #define _WIN32_WINNT…...

LeetCode151:反转字符串中的单词

题目描述 给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意:输入字符串 s中可能会存在前导空…...

Linux入门-常见指令及权限理解

目录 1、Linux背景 1.1、发展历史 1.2、开源 1.3Linux企业应用现状 2、Linux下的基本命令 2.1、ls 指令 2.2、pwd 命令 2.3、cd 命令 2.4、touch命令 2.5、mkdir 命令 2.6、rmdir 指令和 rm指令 2.7 man 指令 2.8、cp指令 2.9、mv 指令 2.10 cat 2.11 more 2…...

找工作的经验总结一——渠道与简历

关于简历与面试的经验总结,也可以说是关于找工作的方法论。 这里我们用第一性原理的方法论来分析找工作这件事。 首先,我们的目的是什么? 当然是找工作,不论你是大学刚毕业,还是创业失败,或者是在家闲着…...

第 126 场 LeetCode 双周赛题解

A 求出加密整数的和 模拟 class Solution { public:int sumOfEncryptedInt(vector<int> &nums) {int res 0;for (auto x: nums) {string s to_string(x);char ch *max_element(s.begin(), s.end());for (auto &c: s)c ch;res stoi(s);}return res;} };B 执行…...

固态浸压计

Solid State Dip Meter(固态浸没仪/固态浸压计) 是真空管栅极浸入式仪表的固态半导体版本。它是一种用于测量 LC 电路谐振频率的仪器。LC 电路是由电感 (L) 和电容 (C) 组成的电路。当电感的感抗与电容的容抗相互抵消时&#xff0c;这些元件可以谐振于特定频率。 固态浸入式仪…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...