当前位置: 首页 > news >正文

【python】使用代理IP爬取猫眼电影专业评分数据

前言 

我们为什么需要使用IP代理服务?

在编写爬虫程序的过程中,IP封锁无疑是一个常见且棘手的问题。尽管网络上存在大量的免费IP代理网站,但其质量往往参差不齐,令人堪忧。许多代理IP的延迟过高,严重影响了爬虫的工作效率;更糟糕的是,其中不乏大量已经失效的代理IP,使用这些IP不仅无法绕过封锁,反而可能使爬虫陷入更深的困境。

本篇文章中介绍一下如何使用Python的Requests库和BeautifulSoup库来抓取猫眼电影网站上的专业评分数据。

正文

1、导包

import requests
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt

Requests库是一个简单易用的HTTP库,用于发送网络请求和获取响应数据。BeautifulSoup库则是一个用于解析HTML和XML文档的Python库,可以帮助我们从网页中提取所需的数据。

2、设置代理

设置代理和代理信息可以在这里获取:IP代理服务

# 设置代理信息
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "your_proxy_user"
proxyPass = "your_proxy_password"# 设置代理
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {"host": proxyHost,"port": proxyPort,"user": proxyUser,"pass": proxyPass,
}
proxies = {"http": proxyMeta,"https": proxyMeta,
}

3、设置请求头

请求头的获取方式可以参考这篇文章:爬虫入门学习(三)请求headers处理-CSDN博客

当然不用自己的也行哈哈 


# 设置请求头,模拟浏览器访问
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}

4、发起请求

# 发起请求,获取网页内容
url = 'https://maoyan.com/films?showType=3'
response = requests.get(url, headers=headers, proxies=proxies)  # 添加proxies参数
soup = BeautifulSoup(response.text, 'html.parser')

5、解析网页内容

# 解析网页内容,提取专业评分数据
movie_names = []
professional_scores = []for movie in soup.find_all('div', attrs={'class': 'movie-item film-channel'}):movie_name = movie.find('span', attrs={'class': 'name'}).textscore = movie.find('span', attrs={'class': 'integer'}).text + movie.find('span', attrs={'class': 'fraction'}).textmovie_names.append(movie_name)professional_scores.append(score)# 将数据存储到DataFrame中
data = {'电影名称': movie_names, '专业评分': professional_scores}
df = pd.DataFrame(data)

6、数据可视化

# 数据可视化
plt.figure(figsize=(10, 6))
plt.bar(df['电影名称'], df['专业评分'], color='skyblue')
plt.title('猫眼电影专业评分排行榜')
plt.xlabel('电影名称')
plt.ylabel('专业评分')
plt.xticks(rotation=45)
plt.show()

上述代码片段展示了如何运用Python中的Requests库与BeautifulSoup库,精准地抓取猫眼电影网站上的专业评分数据。随后,通过Pandas库对数据进行整理与分析,再借助Matplotlib库进行可视化呈现。这一数据采集、处理与可视化的完整流程。

完整代码如下:

# 导入所需的库
import requests
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt# 设置代理信息
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "your_proxy_user"
proxyPass = "your_proxy_password"# 设置代理
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {"host": proxyHost,"port": proxyPort,"user": proxyUser,"pass": proxyPass,
}
proxies = {"http": proxyMeta,"https": proxyMeta,
}# 设置请求头,模拟浏览器访问
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}# 发起请求,获取网页内容
url = 'https://maoyan.com/films?showType=3'
response = requests.get(url, headers=headers, proxies=proxies)  # 添加proxies参数
soup = BeautifulSoup(response.text, 'html.parser')# 解析网页内容,提取专业评分数据
movie_names = []
professional_scores = []for movie in soup.find_all('div', attrs={'class': 'movie-item film-channel'}):movie_name = movie.find('span', attrs={'class': 'name'}).textscore = movie.find('span', attrs={'class': 'integer'}).text + movie.find('span', attrs={'class': 'fraction'}).textmovie_names.append(movie_name)professional_scores.append(score)# 将数据存储到DataFrame中
data = {'电影名称': movie_names, '专业评分': professional_scores}
df = pd.DataFrame(data)# 数据可视化
plt.figure(figsize=(10, 6))
plt.bar(df['电影名称'], df['专业评分'], color='skyblue')
plt.title('猫眼电影专业评分排行榜')
plt.xlabel('电影名称')
plt.ylabel('专业评分')
plt.xticks(rotation=45)
plt.show()

当然,如果你自己要使用的话得用自己专属的IP代理信息,而且具体情况得具体分析。如果你买了代理IP的话,不会的直接问客服,直接给你服务的服服帖帖的😎。

小结

本文详细阐述了如何利用Python爬虫技术从猫眼电影网站获取专业评分数据的过程,并通过代码实例展示了从设置代理、发起请求、解析网页内容到数据提取与可视化的完整流程。

首先,文章介绍了必要的库导入,包括requests用于发起网络请求,BeautifulSoup用于解析HTML页面,pandas用于数据处理,以及matplotlib用于数据可视化。接着,通过设置代理和请求头,模拟了浏览器访问,成功绕过了可能存在的反爬虫机制,获取了目标网页的内容。

在解析网页内容方面,文章通过BeautifulSoup的find_all方法定位到包含电影信息的div元素,并提取了电影名称和专业评分数据。这些数据被存储在一个列表中,为后续的数据处理和分析提供了基础。

为了更直观地展示数据,文章还利用pandas库将提取的数据转换成了DataFrame格式,并使用matplotlib库绘制了专业评分排行榜的条形图。这不仅有助于读者更好地理解数据分布情况,还能为后续的深入分析提供直观的参考。

相关文章:

【python】使用代理IP爬取猫眼电影专业评分数据

前言 我们为什么需要使用IP代理服务? 在编写爬虫程序的过程中,IP封锁无疑是一个常见且棘手的问题。尽管网络上存在大量的免费IP代理网站,但其质量往往参差不齐,令人堪忧。许多代理IP的延迟过高,严重影响了爬虫的工作…...

C/C++中枚举(enum)和结构体(struct)的异同

一、枚举 enum 1.普通枚举,枚举在C中使用比C使用简单 C语言: enum Color {red,green,blue }; enum Color c red;C语言 enum Color {red,green,blue }; Color c red;C认为这种枚举方式会污染名字,即:枚举使用的名字,在同一个作…...

【数据可视化】使用Python + Gephi,构建中医方剂关系网络图!

代码和示例数据下载 前言 在这篇文章中,我们将会可视化 《七版方剂学》 的药材的关系,我们将使用Python制作节点和边的数据,然后在Gephi中绘制出方剂的网络图。 Gephi是一个专门用于构建网络图的工具,只要你能提供节点和边的数…...

部署prometheus+Grafana可视化仪表盘监控服务

一、部署prometheus及监控仪表盘 简介 Prometheus是开源监控报警系统和时序列数据库(TSDB)。 Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控,输出被监控组件信息的HTTP接口被叫做expo…...

python中的类与对象

前言 在Python中,类是一种用于创建新类型对象的结构,它允许我们将数据和功能(属性和方法)封装到一个单独的逻辑单元中。类可以被看作是创建对象(实例)的蓝图或模板。类(Class)和对象…...

sentry-cli - error: Failed to load .sentryclirc file from project path

Xcode 15.2 warning sentry-cli - error: Failed to load .sentryclirc file from project path (/Users/zhuhongwei/Desktop/pandabill/.sentryclirc)推荐一下刚上线的 App 熊猫小账本,里面有用到这篇博客讲的内容 熊猫小账本 一个简洁的记账 App,用于…...

回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测(完整源码和数据) …...

如何添加 Android Native 系统服务

如何添加 Android Native 系统服务 工作学习过程中,我们可能需要去阅读不同类型的 Native 系统服务,也有可能会自己去完成一个 Native 系统服务。无论哪种情况都需要我们了解基本的 Native 如何去添加。就像我们写 Android App 得先了解一下四大组件才行…...

【力扣】189.轮转数组

题目描述 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6…...

C语言字符函数和字符串函数详解

Hello, 大家好,我是一代,今天给大家带来有关字符函数和字符串函数的有关知识 所属专栏:C语言 创作不易,望得到各位佬们的互三呦 一.字符函数 在C语言中有一些函数是专门为字符设计的,这些函数的使用都需要包含一个头文…...

【CKA模拟题】查询消耗CPU最多的Pod

题干 For this question, please set this context (In exam, diff cluster name) 对于此问题,请设置此上下文(在考试中,diff 集群名称) kubectl config use-context kubernetes-adminkubernetesFind the pod that consumes the …...

网络简略总结

目录 一、三次握手 四次挥手 1、三次握手:为了建立长链接进行交互即建立一个会话,使用http/https协议 2、四次挥手是一个断开连接释放服务器资源的过程 3、如果已经建立了连接,但是客户端突然出现故障了怎么办? 4、谁可以中断连接?客户端还是服务端还是都可以? 5、…...

如何处理错误情况

处理错误情况是确保自动窗帘系统稳定运行的重要一环。在编写代码时,你需要考虑可能发生的各种错误情况,并编写相应的错误处理代码。下面是一些处理错误情况的常见方法: (1)错误检测: 首先,你需要能够检测到错误的发生。…...

【Greenhills】MULTI IDE-GHS最新版本Compiler 23.5.4的兼容性问题

【更多软件使用问题请点击亿道电子官方网站查询】 1、 文档目标 关于GHS推出的最新编译器版本 Compiler 2023.5.4在GHS以前版本的MULTI IDE上面能否使用的问题 2、 问题场景 针对于,客户使用MULTI IDE 8.1.4以前的IDE版本,想要搭载使用最新版本的编译器…...

用连续自然数之和来表达整数 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 100分 题解: Java / Python / C++ 题目描述 一个整数可以由连续的自然数之和来表示。给定一个整数,计算该整数有几种连续自然数之和的表达式,且打印出每种表达式。 输入描述 一个目标整数T (1 <=T<= 1000) 输出描述 该整数的所有表达式…...

SQLiteC/C++接口详细介绍之sqlite3类(十二)

返回目录&#xff1a;SQLite—免费开源数据库系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍之sqlite3类&#xff08;十一&#xff09; 下一篇&#xff1a;SQLiteC/C接口详细介绍之sqlite3类&#xff08;十三&#xff09; ​37.sqlite3_load_extension 用于在SQLit…...

linux系统--------------mysql数据库管理

目录 一、SQL语句 1.1SQL语言分类 1.2查看数据库信息 1.3登录到你想登录的库 1.4查看数据库中的表信息 1.5显示数据表的结构&#xff08;字段&#xff09; 1.5.1数据表的结构 1.5.2常用的数据类型: 二、关系型数据库的四种语言 2.1DDL&#xff1a;数据定义语言&am…...

网络——入门基础

目录 协议 网络协议 OSI七层模型 网络传输基本流程 网络传输流程图 局域网通信 数据包的封装和解包 广域网通信 网络地址管理 IP地址 MAC地址 协议 关于什么是局域网&#xff0c;什么是广域网&#xff0c;我这里就不过多赘述了&#xff0c;我们直接来谈一下什么…...

二、yocto 集成ros2(基于raspberrypi 4B)

yocto 集成ros2 yocto 集成ros21. 下载ros layer2. 编译集成ros3. 功能验证 yocto 集成ros2 本篇文章为基于raspberrypi 4B单板的yocto实战系列的第二篇文章。 一、yocto 编译raspberrypi 4B并启动 本节我们将ros2机器人操作系统移植到我们的yocto系统里面。 1. 下载ros laye…...

html--bug

文章目录 html html <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>老师</title><style>body {background-color: #008000;margin: 0px;cursor: none;overflow: hidden;}</style></head><bod…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

命令行关闭Windows防火墙

命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)​方法二:CMD命令…...