当前位置: 首页 > news >正文

【C++】仿函数优先级队列反向迭代器

目录

一、优先级队列

1、priority_queue 的介绍

2、priority_queue 的使用

3、 priority_queue 的模拟实现

1)priority_queue()/priority_queue(first, last)

2)push(x)

3)pop()

4) top()

5) empty ()

​6)size ()

二、仿函数

1、定义

三、完整代码

四、反向迭代器

1、重新定义一个类

2、复用正向迭代器

3、完整代码


一、优先级队列

1、priority_queue 的介绍

⭕ 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。

⭕ 此上下文类似于,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。

⭕优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

⭕底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:

empty():检测容器是否为空

size():返回容器中有效元素个数

front():返回容器中第一个元素的引用

push_back():在容器尾部插入元素

pop_back():删除容器尾部元素

⭕标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue

⭕ 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作。

【优先级队列的官方文档】

2、priority_queue 的使用

优先级队列默认使用 vector 作为其底层存储数据的容器,在 vector上又使用了堆算法将 vector 中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意: 默认情况下priority_queue是大堆 

1)priority_queue()/priority_queue(first, last)

功能:构造一个空的优先级队列。

2)empty()

功能:检测优先级队列是否为空,是返回true,否则返回 false

3)top ()

功能:返回优先级队列最大(或最小)元素,即堆顶元素

4)push(x)

功能:在优先级队列中插入元素x

5)pop()

功能:删除优先级队列最大(或最小)元素,即堆顶元素

如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供 > 或者< 的重载。

3、 priority_queue 的模拟实现

通过对 priority_queue 的底层结构就是堆,因此此处只需对对进行通用的封装即可。其底层本质是一个二叉树的堆,使用 vector 来构建,再加上堆的算法,将这个线性表构建成堆的结构。

1)priority_queue()/priority_queue(first, last)

优先级队列实例化出的对象本身就是一个堆,所以我们需要在它的构造函数里就将建堆工作做好。不像前面的stack和queue我们不需要写构造函数的,因为自定义成员变量,初始化时,会调用默认构造函数或者它自己的构造函数。而这里构造函数需要构造出一个堆,需要我们自己手动操作了。

优先级队列可以使用迭代器来初始化:

2)push(x)

先插入一个数据到数组里,但是需要保留堆的结构,我们可以使用向上调整法。

3)pop()

 删除堆顶元素,直接删除会破坏堆的结构。可以将堆顶元素和最后一个元素相交换,删除最后一个元素,将堆顶元素向下调整。

4) top()

返回堆顶元素。直接返回 _con 下标为0的值。

5) empty ()

检查优先级队列是否为空,直接判断 _con 是否为空即可。

 6)size ()

返回优先级队列的个数,返回 _con 的个数即可

二、仿函数

1、定义

仿函数(functor),就是使一个类或者结构体的使用看上去像一个函数。其实现就是类中重载 operator() 运算符,这个类就有了类似函数的行为,类的对象可以像函数一样使用。

我们在模拟实现优先级队列时会发现,我们只模拟了默认大堆的实现方式,如果要模拟实现小堆,难道要再重新写一份相同的代码吗?我们可以使用仿函数控制比较,进而控制大堆还是小堆,再增加一个模板参数用来传递仿函数,仿函数可以控制比较方式。这样就可以灵活的传递仿函数来控制创建大堆还是小堆。

三、完整代码

namespace zhou
{template<class T>class Less{public:bool operator()(T& x, T& y)//重载()运算符  {return x < y;}};template<class T>class Greater{public:bool operator()(T& x, T& y)//重载() {return x > y;}};template<class T, class Container = vector<T>, class Comapre = less<T>>class priority_queue{public:void Adjustdown(int parent){size_t child = 2 * parent + 1;while (child < _con.size()){//if (child + 1 < _con.size() && _con[child] < _con[child + 1)if (child + 1 < _con.size()&& com(_con[child], _con[child + 1])){child++;}if (_con[parent] < _con[child]){swap(_con[parent], _con[child]);parent = child;child = 2 * parent + 1;}else{break;}}}template<class InputIterator>priority_queue(InputIterator begin, InputIterator last){//第一首先将数据插入进去while (begin != last){_con.push_back(*begin);++begin;}//第二需要建堆,默认建的是大堆--利用向下调整算法建堆//从最后一个叶子结点的父亲开始向下调整,然后依次往前走,直到走到堆顶。for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--){Adjustdown(i);}}void Adjustup(int child){Comapre com;size_t parent = (child - 1) / 2;while (child < _con.size()){//if (_con[child] > _con[parent])if (com(_con[parent], _con[child])){swap(_con[child], _con[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}void push(const T& x){_con.push_back(x);Adjustup(_con.size() - 1);}void pop(){swap(_con[0], _con[_con.size() - 1]);_con.pop_back();Adjustdown(0);}const T& top(){return _con[0];}bool empty(){return _con.empty();}size_t size(){return _con.size();}private:Container _con;};} 

四、反向迭代器

1、重新定义一个类

在 list 模拟实现的时候,只模拟实现了正向迭代器,反向迭代器还没有实现。接下来我们就可以来实现反向迭代器。之前我们是封装了一个类来实现正向迭代器,现在我们也同样封装一个反向迭代器的类。重新定义 rbegin() 和 rend().所以需要修改的是“++”和“--”的运算符重载。

 

【测验代码】

2、复用正向迭代器

⭕写一个反向迭代器固然可以实现目标的,但我们看 list 源代码时会发现他是对正向迭代器的复用。

⭕STL大佬在设计反向迭代器时,为了追求与正向迭代器的对称,将首尾指针得到指向反向保持一致,使rbegin()end()位置,rend()begin()位置。

⭕在这样的设计下,rbegin()和 rend()的实现就可以直接对应复用了,而 operator*()返回的就不是当前所指向的对象,而是成了上一个对象。

⭕前面在模拟实现list时,运用了多参数模板来解决const对象代码冗余问题,在反向迭代器的实现中也运用了相同原理,通过对形参传递不同的对象,变换为不同的迭代器,其中Ref表示引用对象,Ptr表示指针对象。

 

3、完整代码

//反向迭代器模拟实现
namespace zhou
{template<class Iterator, class Ref, class Ptr>struct ReverseIterator{typedef ReverseIterator<Iterator, Ref, Ptr> Self;Iterator _cur;//用正向迭代器来构造反向迭代器ReverseIterator(Iterator it):_cur(it){}Ref operator*(){//为了对称返回前一个位置Iterator tmp = _cur;--tmp;return *tmp;}Self& operator++(){--_cur;return *this;}Self& operator--(){++_cur;return *this;}bool operator!=(const Self& s){return _cur != s._cur;}};
}
//完整 list 模拟实现
namespace zhou
{template<class T>struct list_node{list_node<T>* _next;list_node<T>* _prev;T _data;list_node(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}};template<class T, class Ref, class Ptr>struct __list_iterator{typedef list_node<T> node;typedef __list_iterator<T, Ref, Ptr> self;node* _node;__list_iterator(node* n):_node(n){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};//定义一个反向迭代器的类/*template<class T, class Ref, class Ptr>struct __list_reverse_iterator{typedef list_node<T> node;typedef __list_reverse_iterator<T, Ref, Ptr> self;node* _node;__list_reverse_iterator(node* n):_node(n){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}self& operator++(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_prev;return tmp;}self& operator--(){_node = _node->_next;return *this;}self operator--(int){self tmp(*this);_node = _node->_next;return tmp;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};*/template<class T>class list{typedef list_node<T> node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;//typedef __list_reverse_iterator<T, T&, T*> reverse_iterator;typedef ReverseIterator<iterator, T&, T*> reverse_iterator;typedef ReverseIterator<iterator, const T&, const T*> const_reverse_iterator;reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}/*reverse_iterator rbegin(){return reverse_iterator(_head->_prev);}reverse_iterator rend(){return reverse_iterator(_head);}*/iterator begin(){return iterator(_head->_next);}const_iterator begin() const{return const_iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator end() const{//iterator it(_head->_next);//return it;return const_iterator(_head);}void empty_init(){_head = new node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}template <class Iterator>list(Iterator first, Iterator last){empty_init();while (first != last){push_back(*first);++first;}}void swap(list<T>& tmp){std::swap(_head, tmp._head);}list(const list<T>& lt){empty_init();list<T> tmp(lt.begin(), lt.end());swap(tmp);}// lt1 = lt3list<T>& operator=(list<T> lt){swap(lt);return *this;}~list(){clear();delete _head;_head = nullptr;}void clear(){iterator it = begin();while (it != end()){//it = erase(it);erase(it++);}}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}void insert(iterator pos, const T& x){node* cur = pos._node;node* prev = cur->_prev;node* new_node = new node(x);prev->_next = new_node;new_node->_prev = prev;new_node->_next = cur;cur->_prev = new_node;}iterator erase(iterator pos){assert(pos != end());node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);}private:node* _head;};void list_list1(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);for (auto e : lt){cout << e << " ";}cout << endl;list<int>::reverse_iterator rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";++rit;}}
}

相关文章:

【C++】仿函数优先级队列反向迭代器

目录 一、优先级队列 1、priority_queue 的介绍 2、priority_queue 的使用 3、 priority_queue 的模拟实现 1&#xff09;priority_queue()/priority_queue(first, last) 2&#xff09;push&#xff08;x&#xff09; 3&#xff09;pop&#xff08;&#xff09; 4&#…...

UE4_调试工具_绘制调试球体

学习笔记&#xff0c;仅供参考&#xff01; 效果&#xff1a; 步骤&#xff1a; 睁开眼睛就是该变量在此蓝图的实例上可公开编辑。 勾选效果&#xff1a;...

机器人路径规划:基于冠豪猪优化算法(Crested Porcupine Optimizer,CPO)的机器人路径规划(提供MATLAB代码)

一、机器人路径规划介绍 移动机器人&#xff08;Mobile robot&#xff0c;MR&#xff09;的路径规划是 移动机器人研究的重要分支之&#xff0c;是对其进行控制的基础。根据环境信息的已知程度不同&#xff0c;路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或…...

探索.NET中的定时器:选择最适合你的应用场景

概述&#xff1a;.NET提供多种定时器&#xff0c;如 System.Windows.Forms.Timer适用于UI&#xff0c;System.Web.UI.Timer用于Web&#xff0c;System.Diagnostics.Timer用于性能监控&#xff0c;System.Threading.Timer和System.Timers.Timer用于一般定时任务。在.NET 6及以上…...

5467: 【搜索】流浪奶牛

题目描述 吃不到饭的奶牛Bessie一气之下决定离开农场&#xff0c;前往阿尔费茨山脉脚底下的农场&#xff08;听说那儿的草极其美味&#xff09;投靠她的亲戚Jimmy。但是前往目的地的山路崎岖&#xff0c;Bessie又没有吃饭&#xff0c;她需要尽量保存体力&#xff0c;以最轻松的…...

spring boot整合elasticsearch实现查询功能

第一步、添加依赖&#xff08;注意版本对应关系&#xff09;根据spring boot版本选择合适的版本 <dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.6.2</version></dependenc…...

白嫖阿里云程序员日历

https://developer.aliyun.com/topic/lingma/activities/202403?taskCode14508&recordId44f3187f7950776f494eec668a62c65f#/?utm_contentm_fission_1 「通义灵码 体验 AI 编码&#xff0c;开 AI 盲盒」 打开链接直接领就行了...

ubuntu20.04搭建rtmp视频服务

1.安装软件 sudo apt-get install ffmpeg sudo apt-get install nginx sudo apt-get install libnginx-mod-rtmp 2.nginx配置 修改/etc/nginx/nginx.conf文件&#xff0c;在末尾添加&#xff1a; rtmp {server {listen 1935;application live {live on;}} } 3.视频测试 本…...

Request failed with status code 504,Gateway time out

问题描述&#xff1a; 部署在测试环境的项目在执行某功能时&#xff0c;后台程序在执行过程中&#xff0c;前端控制台在一分钟左右会报出Request failed with status code 504&#xff0c;Gateway time out异常。但是在本地开发环境会正常运行&#xff0c;并不会报出异常。 问题…...

四、Elasticsearch 进阶

自定义目录 4.1 核心概念4.1.1 索引&#xff08;Index&#xff09;4.1.2 类型&#xff08;Type&#xff09;4.1.3 文档&#xff08;Document&#xff09;4.1.3 字段&#xff08;Field&#xff09;4.1.5 映射&#xff08;Mapping&#xff09;4.1.6 分片&#xff08;Shards&#…...

海外云手机如何帮助亚马逊引流?

随着全球化的推进&#xff0c;出海企业和B2B外贸企业越来越注重海外市场的开拓&#xff0c;这已成为企业争夺市场份额的重要策略。本文将重点探讨海外云手机在优化亚马逊店铺引流方面的作用和优势。 海外云手机是一种在云端运行的虚拟手机&#xff0c;能够在单一芯片上多开几个…...

Gateway新一代网关

Gateway新一代网关 1、概述 ​ Cloud全家桶中有个很重要的组件就是网关&#xff0c;在1.x版本中都是采用的Zuul网关&#xff1b; ​ 但在2.x版本中&#xff0c;zuul的升级一直跳票&#xff0c;SpringCloud最后自己研发了一个网关SpringCloud Gateway替代Zuul。 ​ 官网&…...

Simulink中Scope图像导出在MATLAB上重新画

在Simulink中&#xff0c;Scope是一个常用的可视化工具&#xff0c;用于实时显示仿真过程中的信号波形。 1. 从Simulink Scope中导出数据 首先&#xff0c;您需要在Simulink的Scope中捕获或记录想要导出的数据。这通常通过配置Scope的“Logging”选项来实现。确保在仿真过程中…...

利用opencv获取系统时间

前一篇《c获取系统时间的方法-CSDN博客》博客介绍了如何在不同系统中获取系统时间的方法&#xff0c;但这些方法受系统的限制&#xff0c;如time.h就只能在Linux系统中使用。而opencv则不受系统限制&#xff0c;示例代码如下&#xff0c; #include <opencv2/opencv.hpp>…...

Go环境变量配置,及GOROOT、GOPATH的区别

一、安装Go go下载地址&#xff1a; https://golang.google.cn/dl/ windows下载安装&#xff0c;有两种方式。解压和直接安装 方式一&#xff1a;直接下载安装包。以.msi结尾的文件。例如&#xff1a; go1.22.1.windows-amd64.msi 下载后&#xff0c;双击后一直点下一步即…...

爬虫系列-CSS基础语法

&#x1f308;个人主页&#xff1a;会编程的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” CSS全称层叠样式表 &#xff0c;主要用来定义页面内容展示效果的一门语言&#xff0c;HTML&#xff1a;页面骨架&#xff0c;素颜CSS&#xff1a;页面效果美化&#xff1a…...

获取比特币和莱特币的实时价格

数据来源&#xff1a; https://datacenter.jin10.com/reportType/dc_bitcoin_current 代码&#xff1a; import akshare as ak import pandas as pd pd.set_option(display.max_columns, None) pd.set_option(display.max_rows, None) pd.set_option(display.width, 1000)cr…...

Axure案例分享—折叠面板(附下载地址)

今天和大家分享的Axure案例是折叠面板 折叠面板是移动端APP中常见的组件之一&#xff0c;有时候也称之为手风琴。咱们先看下Axure画出的折叠面板原型效果&#xff0c;然后再对该组件进行详细讲解。 一、功能介绍 折叠或展开多个面板内容&#xff0c;默认为展开一项内容&…...

SQLiteC/C++接口详细介绍sqlite3_stmt类(五)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;四&#xff09;- 下一篇&#xff1a; 无 12. sqlite3_bind_text16函数 sqlite3_bind_text16函数用于将UTF-16编码的文本数据&#xff08;字符串&#xff09;绑定…...

单片机-- 数电(3)

编码器与译码器 译码 &#xff1a;将二进制代码转化为其他进制的代码 编码 &#xff1a;就是将其他代码转换为二进制码 编码器的类型 1二进制编码器 用n位二进制数码对2的n次方个输入信号进行编码的电路 2二-十进制编码器 将0到9十个十进制数转化为二进制代码的电路 2…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

【多线程初阶】单例模式 指令重排序问题

文章目录 1.单例模式1)饿汉模式2)懒汉模式①.单线程版本②.多线程版本 2.分析单例模式里的线程安全问题1)饿汉模式2)懒汉模式懒汉模式是如何出现线程安全问题的 3.解决问题进一步优化加锁导致的执行效率优化预防内存可见性问题 4.解决指令重排序问题 1.单例模式 单例模式确保某…...