当前位置: 首页 > news >正文

自然语言处理-基于预训练模型的方法-chapter3基础工具集与常用数据集

文章目录

  • 3.1NLTK工具集
    • 3.1.1常用语料库和词典资源
    • 3.1.2常见自然语言处理工具集
  • 3.2LTP工具集
  • 3.3pytorch基础
    • 3.3.1张量基本概念
    • 3.3.2张量基本运算
    • 3.3.3自动微分
    • 3.3.4调整张量形状
    • 3.3.5广播机制
    • 3.3.6索引与切片
    • 3.3.7降维与升维
  • 3.4大规模预训练模型

3.1NLTK工具集

3.1.1常用语料库和词典资源

  1. 下载语料库
import nltk
nltk.download()

在这里插入图片描述

  1. 停用词
from nltk.corpus import stopwordsprint(stopwords.words('english'))['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',
  1. 常用词典
    (1)wordNet
from nltk.corpus import wordnet
syns = wordnet.synsets("bank")
print(syns[0].name())
print(syns[0].definition())
print(syns[0].examples())
print(syns[0].hypernyms())bank.n.01
sloping land (especially the slope beside a body of water)
['they pulled the canoe up on the bank', 'he sat on the bank of the river and watched the currents']
[Synset('slope.n.01')]

3.1.2常见自然语言处理工具集

  1. 分句
    将一个长文档分成若干句子。
from nltk.corpus import gutenberg
from nltk.tokenize import sent_tokenize
text = gutenberg.raw("austen-emma.txt")
sentences = sent_tokenize(text)
print(sentences[0])

3.2LTP工具集

from ltp import LTP
ltp = LTP()segment, hidden = ltp.seg(["南京市长江大桥。"])
print(segment)AttributeError: 'LTP' object has no attribute 'seg'
出现一些问题...

3.3pytorch基础

PyTorch是一个基于张量(Tensor)的数学运算工具包,提供了两个高级功能

  1. 具有强大的GPU(图形处理单元,也叫显卡)加速的张量计算功能
  2. 能够自动进行微分计算,从而可以使用基于梯度的方法对模型参数进行优化。

3.3.1张量基本概念

import torchprint(torch.empty(2, 3))
print(torch.rand(2, 3)) # 0-1均匀
print(torch.randn(2, 3))    # 标准正态生成
print(torch.zeros(2, 3, dtype=torch.long))  # 设置数据类型
print(torch.zeros(2, 3, dtype=torch.double))
print(torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]
])) # 自定义
print(torch.arange(10)) # 排序tensor([[-8.5596e-30,  8.4358e-43, -8.5596e-30],[ 8.4358e-43, -1.1837e-29,  8.4358e-43]])
tensor([[0.7292, 0.9681, 0.8636],[0.3833, 0.8089, 0.5729]])
tensor([[-1.7307,  1.2082,  1.9423],[ 0.2461,  2.3273,  0.1628]])
tensor([[0, 0, 0],[0, 0, 0]])
tensor([[0., 0., 0.],[0., 0., 0.]], dtype=torch.float64)
tensor([[1., 2., 3.],[4., 5., 6.]])
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])Process finished with exit code 0

使用gpu

print(torch.rand(2, 3).cuda())
print(torch.rand(2, 3).to("cuda"))
print(torch.rand(2, 3), device="cuda")

3.3.2张量基本运算

pytorch的运算说白了就是将数据保存在向量中进行运算。
±*/

x = torch.tensor([1, 2, 3], dtype=torch.double)
y = torch.tensor([4, 5, 6], dtype=torch.double)
print(x + y)
print(x - y)
print(x * y)
print(x / y)
print(x.dot(y))
print(x.sin())
print(x.exp())tensor([5., 7., 9.], dtype=torch.float64)
tensor([-3., -3., -3.], dtype=torch.float64)
tensor([ 4., 10., 18.], dtype=torch.float64)
tensor([0.2500, 0.4000, 0.5000], dtype=torch.float64)
tensor(32., dtype=torch.float64)
tensor([0.8415, 0.9093, 0.1411], dtype=torch.float64)
tensor([ 2.7183,  7.3891, 20.0855], dtype=torch.float64)
x = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]
]) # 自定义
print(x.mean(dim=0))    # 每列取均值
print(x.mean(dim=0, keepdim=True))    # 每列取均值
print(x.mean(dim=1))    # 每行取均值
print(x.mean(dim=1, keepdim=True))    # 每行取均值
y = torch.tensor([[7.0, 8.0, 9.0],[10.0, 11.0, 12.0]
])
print(torch.cat((x, y), dim=0))
print(torch.cat((x, y), dim=1))tensor([2.5000, 3.5000, 4.5000])
tensor([[2.5000, 3.5000, 4.5000]])
tensor([2., 5.])
tensor([[2.],[5.]])
tensor([[ 1.,  2.,  3.],[ 4.,  5.,  6.],[ 7.,  8.,  9.],[10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  7.,  8.,  9.],[ 4.,  5.,  6., 10., 11., 12.]])Process finished with exit code 0

3.3.3自动微分

可自动计算一个函数关于一个变量在某一取值下的导数。

x = torch.tensor([2.], requires_grad=True)
y = torch.tensor([3.], requires_grad=True)
z = (x+y) * (y-2)
print(z)
z.backward()    # 自动调用反向传播算法计算梯度
print(x.grad, y.grad)tensor([5.], grad_fn=<MulBackward0>)
tensor([1.]) tensor([6.])Process finished with exit code 0

3.3.4调整张量形状

x = torch.tensor([2.], requires_grad=True)
y = torch.tensor([3.], requires_grad=True)
z = (x+y) * (y-2)
print(z)
z.backward()    # 自动调用反向传播算法计算梯度
print(x.grad, y.grad)x = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]
]) # 自定义
print(x, x.shape)
print(x.view(2, 3))
print(x.view(3, 2))
print(x.view(-1, 3))    # -1就是针对非-1的自动调整
y = torch.tensor([[7.0, 8.0, 9.0],[10.0, 11.0, 12.0]
])
print(y.transpose(0, 1))tensor([5.], grad_fn=<MulBackward0>)
tensor([1.]) tensor([6.])
tensor([[1., 2., 3.],[4., 5., 6.]]) torch.Size([2, 3])
tensor([[1., 2., 3.],[4., 5., 6.]])
tensor([[1., 2.],[3., 4.],[5., 6.]])
tensor([[1., 2., 3.],[4., 5., 6.]])Process finished with exit code 0

3.3.5广播机制

3.3.6索引与切片

3.3.7降维与升维

x = torch.tensor([1.0, 2.0, 3.0, 4.0]
)
print(x.shape)
y = torch.unsqueeze(x, dim=0)
print(y, y.shape)
y = x.unsqueeze(dim=0)
print(y, y.shape)
z = y.squeeze()
print(z, z.shape)torch.Size([4])
tensor([[1., 2., 3., 4.]]) torch.Size([1, 4])
tensor([[1., 2., 3., 4.]]) torch.Size([1, 4])
tensor([1., 2., 3., 4.]) torch.Size([4])

3.4大规模预训练模型

相关文章:

自然语言处理-基于预训练模型的方法-chapter3基础工具集与常用数据集

文章目录3.1NLTK工具集3.1.1常用语料库和词典资源3.1.2常见自然语言处理工具集3.2LTP工具集3.3pytorch基础3.3.1张量基本概念3.3.2张量基本运算3.3.3自动微分3.3.4调整张量形状3.3.5广播机制3.3.6索引与切片3.3.7降维与升维3.4大规模预训练模型3.1NLTK工具集 3.1.1常用语料库和…...

【SpringMVC】@RequestMapping

RequestMapping注解 1、RequestMapping注解的功能 从注解名称上我们可以看到&#xff0c;RequestMapping注解的作用就是将请求和处理请求的控制器方法关联起来&#xff0c;建立映射关系。 SpringMVC 接收到指定的请求&#xff0c;就会来找到在映射关系中对应的控制器方法来处…...

【深度学习】BERT变体—SpanBERT

SpanBERT出自Facebook&#xff0c;就是在BERT的基础上&#xff0c;针对预测spans of text的任务&#xff0c;在预训练阶段做了特定的优化&#xff0c;它可以用于span-based pretraining。这里的Span翻译为“片段”&#xff0c;表示一片连续的单词。SpanBERT最常用于需要预测文本…...

根据身高体重计算某个人的BMI值--课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)

实例3&#xff1a;根据身高体重计算某个人的BMI值 BMI又称为身体质量指数&#xff0c;它是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。我国制定的BMI的分类标准如表1所示。 表1 BMI的分类 BMI 分类 <18.5 过轻 18.5 < BMI < 23.9 正常 24 < BM…...

高并发编程JUC之进程与线程高并发编程JUC之进程与线程

1.准备 pom.xml 依赖如下&#xff1a; <properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target&g…...

css基础

1-css引入方式内嵌式style&#xff08;学习&#xff09;<style>p {height: 200;}</style>外联式link&#xff08;实际开发&#xff09;<link rel"stylesheet" href"./2-my.css">2-选择器2.1标签选择器&#xff08;标签名相同的都生效&am…...

Unity - 搬砖日志 - BRP 管线下的自定义阴影尺寸(脱离ProjectSettings/Quality/ShadowResolution设置)

文章目录环境原因解决CSharp 脚本效果预览 - Light.shadowCustomResolution效果预览 - Using Quality Settings应用ControlLightShadowResolution.cs ComponentTools Batching add the Component to all LightReferences环境 Unity : 2020.3.37f1 Pipeline : BRP 原因 (好久没…...

如何在SSMS中生成和保存估计或实际执行计划

在引擎数据库执行查询时执行的过程的步骤由称为查询计划的一组指令描述。​查询计划在SQL Server中也称为SQL Server执行计划,我们可以通过以下步骤来生成和保存估计或实际执行计划。 估计执行计划和实际执行计划是两种执行计划: 实际执行计划:当执行查询时,实际执行计划出…...

mac 环境下安装MongoDB

目录 一、下载MongoDB数据库并进行安装 二. 解压放在/usr/local目录下 三. 配置环境变量 “无法验证开发者”的解决方法 mongodb可视化工具的安装与使用 一、下载MongoDB数据库并进行安装 下载地址&#xff1a;https://www.mongodb.com/try/download/community 二. 解压…...

RTOS中相对延时和绝对延时的区别

相信许多朋友都有过这么一个需求&#xff1a;固定一个时间&#xff08;周期&#xff09;去处理某一件事情。 比如&#xff1a;固定间隔10ms去采集传感器的数据&#xff0c;然后通过一种算法计算出一个结果&#xff0c;最后通过指令发送出去。 你会通过什么方式解决呢&#xf…...

Solon2 项目整合 Nacos 配置中心

网上关于 Nacos 的使用介绍已经很多了&#xff0c;尤其是与 SpringBoot 的整合使用。怎么安装也跳过了&#xff0c;主要就讲 Nacos 在 Solon 里的使用&#xff0c;这个网上几乎是没有的。 1、认识 Solon Solon 一个高效的应用开发框架&#xff1a;更快、更小、更简单&#xf…...

Linux 路由表说明

写在前面&#xff1a; 本文章旨在总结备份、方便以后查询&#xff0c;由于是个人总结&#xff0c;如有不对&#xff0c;欢迎指正&#xff1b;另外&#xff0c;内容大部分来自网络、书籍、和各类手册&#xff0c;如若侵权请告知&#xff0c;马上删帖致歉。 目录route 命令字段分…...

MIPI协议

MIPI调试指南Rev.0.1 June 18, 2019 © 2018 Horizon Robotics. All rights reserved.Revision HistoryThissection tracks the significant documentation changes that occur fromrelease-to-release. The following table lists the technical content changes foreach …...

第十届CCF大数据与计算智能大赛总决赛暨颁奖典礼在苏州吴江顺利举办

2月24日-25日&#xff0c;中国计算机学会&#xff08;CCF&#xff09;主办、苏州市吴江区人民政府支持&#xff0c;苏州市吴江区工信局、吴江区东太湖度假区管理办公室、苏州市吴江区科技局、CCF大数据专家委员会、CCF自然语言处理专业委员会、CCF高性能计算专业委员会、CCF计算…...

PMP高分上岸人士的备考心得,分享考试中你还不知道的小秘密

上岸其实也不是什么特别难的事情&#xff0c;考试一共就180道选择题&#xff0c;题目只要答对60.57%就可以通过考试&#xff0c;高分通过没在怕的&#xff0c;加油备考呀朋友们&#xff01; 这里也提一嘴&#xff0c;大家备考的时候比较顾虑的一个问题就是考试究竟要不要报班…...

ubuntu下编译libpq和libpqxx库

ubuntu下编译libpq和libpqxx库&#xff0c;用于链接人大金仓 上篇文章验证了libpqxx可以链接人大金仓数据库&#xff0c;这篇文章尝试自己编译libpq和libpqxx库。 文章目录ubuntu下编译libpq和libpqxx库&#xff0c;用于链接人大金仓libpq下载libpq库看看有没有libpq库编译lib…...

ESP-C2系列模组开发板简介

C2是一个芯片采用4毫米x 4毫米封装&#xff0c;与272 kB内存。它运行框架&#xff0c;例如ESP-Jumpstart和ESP造雨者&#xff0c;同时它也运行ESP-IDF。ESP-IDF是Espressif面向嵌入式物联网设备的开源实时操作系统&#xff0c;受到了全球用户的信赖。它由支持Espressif以及所有…...

linux权限管理

权限管理 文件的权限针对三类对象进行定义&#xff1a; owner属主&#xff0c;缩写ugroup属组&#xff0c;缩写gother其他&#xff0c;缩写o 1、文件的一般权限 &#xff08;1&#xff09;r,w,x的作用及含义&#xff1a; 权限对文件影响对目录影响r&#xff08;read&#xf…...

提高生活质量,增加学生对校园服务的需求,你知道有哪些?

随着电子商务平台利用移动互联网的趋势提高服务质量&#xff0c;越来越多的传统企业开始关注年轻大学生消费者的校园市场。 提高生活质量&#xff0c;增加学生对校园服务的需求 大学生越来越沉迷于用手机解决生活中的“吃、喝、玩、乐”等服务&#xff0c;如“吃、喝”——可…...

Antlr4:使用grun命令,触发NoClassDefFoundError

1. 意外的发现 在学习使用grun命令时&#xff0c;从未遇到过错误 最近使用grun命令&#xff0c;却遇到了NoClassDefFoundError的错误&#xff0c;使得grun测试工具无法成功启动 错误复现&#xff1a; 使用antlr4命令编译Hello.g4文件&#xff0c;并为指定package&#xff08;…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...