当前位置: 首页 > news >正文

Bert模型输出:last_hidden_state转换为pooler_output

1. BERT模型的输出

在BERT模型中,last_hidden_statepooler_output是两个不同的输出。

(1) last_hidden_state:

    last_hidden_state是指BERT模型中最后一个隐藏层的隐藏状态。它是一个三维张量,其形状为[batch_size, sequence_length, hidden_size]。其中,batch_size是输入序列的批量大小,sequence_length是输入序列的长度,hidden_size是BERT模型的隐藏层大小(通常为768)。
 last_hidden_state保存了输入序列中每个token对应的隐藏状态,这些隐藏状态经过多层的Transformer编码器处理得到。在多数任务中,可以直接使用这个张量进行下游任务的训练或者特征提取。

(2) pooler_output:
     pooler_output是指BERT模型中经过一个特殊的池化层后得到的句子级别表示。它是一个二维张量,其形状为[batch_size, hidden_size]。
pooler_output是通过对BERT模型最后一个隐藏层的第一个token([CLS] token)的隐藏状态应用一个全连接层得到的。这个全连接层的参数在预训练过程中被学习得到。pooler_output可以看作是整个输入序列的压缩表示,通常用于句子级别的任务,如文本分类。

       总的来说,last_hidden_state提供了序列中每个token的隐藏状态信息,而pooler_output提供了整个句子的语义表示。

2. last_hidden_state转换为pooler_output

     在BERT模型中,last_hidden_state是最后一个隐藏层的隐藏状态,而pooler_output是通过应用一个全连接层(通常是一个线性变换加上激活函数)到last_hidden_state中的特殊token([CLS] token)得到的。

      首先从last_hidden_state中提取出每个样本的第一个token(即[CLS] token)的隐藏状态。然后,我们定义了一个线性层pooler_layer,将隐藏状态映射到与BERT模型的隐藏大小相同的空间。最后,我们应用了tanh激活函数,得到 pooler_output,这是整个句子的语义表示。这个pooler_output可以用于句子级别的任务,例如文本分类。

      请确保poor_layer的权重是正确初始化的。通常情况下,应该使用预训练的BERT模型的权重来初始化它。可以在实例化poor_layer时进行这样的初始化。如果使用的是transformers库,它提供了加载预训练BERT模型并提取pooler_output的方法。要使用预训练的BERT模型的权重来初始化线性层 pooler_layer,可以从预训练的BERT模型中加载权重,并将这些权重用作 pooler_layer的初始权重。通常情况下,会使用Hugging Face的 transformers库来加载预训练的BERT模型。

       以下是一个示例代码,演示如何使用transformers库来加载预训练的BERT模型,并使用其中的权重来初始化 pooler_layer:

from transformers import BertModel, BertTokenizer#加载预训练的Bert模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
extractor = BertModel.from_pretrained('bert-base-uncased')#text是原始文本数据
x = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)x = extractor(**x)#获取hidden_state
x1= x['last_hidden_state']# 定义一个线性层,将最后一个隐藏层的第一个token的隐藏状态映射到pooler_output
pooler_layer = nn.Linear(768, 768).to(device)# 使用BERT模型的权重来初始化pooler_layer的权重
with torch.no_grad():pooler_layer.weight.copy_(extractor.pooler.dense.weight)pooler_layer.bias.copy_(extractor.pooler.dense.bias)# 获取CLS token的隐藏状态(最后隐藏层的第一个token),取出每个样本的第一个token的隐藏状态
cls_token_state = x1[:, 0, :].to(device)## 应用线性层并使用激活函数
x1 = torch.tanh(pooler_layer(cls_token_state)).to(device)#直接获取pooler_output
x2=x['pooler_output'].to(device)

       在这个示例中,我们首先从预训练的BERT模型中加载了tokenizer和BERT模型。然后,我们创建了一个与BERT模型隐藏大小相同的线性层 pooler_layer。最后,我们使用`bert_model.pooler.dense`中的权重来初始化`pooler_layer`的权重。这样,`pooler_layer`就被正确初始化了,并可以用于将`last_hidden_state`变换为`pooler_output`。最后x1和x2的结果相同。

相关文章:

Bert模型输出:last_hidden_state转换为pooler_output

1. BERT模型的输出 在BERT模型中,last_hidden_state和pooler_output是两个不同的输出。 (1) last_hidden_state: last_hidden_state是指BERT模型中最后一个隐藏层的隐藏状态。它是一个三维张量,其形状为[batch_size, sequence_length, hidden_size]。其…...

Docker Compose 基本语法

services 是顶级节点,也就是你要启动的服务全部放在这里。 MySOL就是我们预期中的一个服务。 mysql8:指的是我们这个服务叫 mysql8. image:我们这个服务里运行的是什么镜像,或者说跑的是什么。这里指定了使用 mysql:8.0.29 这个版本。 command:启动命令&…...

【算法集训】基础算法:贪心

1913. 两个数对之间的最大乘积差 void insertSort(int * a, int n) {for(int i 1; i < n; i) {int temp a[i];int j i - 1;while(j > 0 && temp < a[j]) {a[j 1] a[j];j--;}a[j 1] temp;} }int maxProductDifference(int* nums, int numsSize){insert…...

Centos7部署单节点MongoDB(V4.2.25)

&#x1f388; 作者&#xff1a;互联网-小啊宇 &#x1f388; 简介&#xff1a; CSDN 运维领域创作者、阿里云专家博主。目前从事 Kubernetes运维相关工作&#xff0c;擅长Linux系统运维、开源监控软件维护、Kubernetes容器技术、CI/CD持续集成、自动化运维、开源软件部署维护…...

隐私计算笔记(1)

一、可信流通体系 建立数据来源可确认、使用范围可界定、流通过程可追溯、安全风险可防范的数据可流通体系。 二、产生信任的基石 身份可确认利益可依赖能力有预期行为有后果 三、数据流通不可信风险 内循环&#xff1a;在内部循环中&#xff0c;数据持有方在其自身的运维…...

查询方法需要使用事务吗?

当数据库隔离级别是默认的可重复读&#xff08;Repeatable Read&#xff09;时&#xff0c;如果查询语句只有一条则不需要事务. 当有多条查询sql语句且需要确保多条sql语句处于同一时间维度时则需要使用事务来确保多条SQL语句处于同一时间节点. 相关知识点 mysql查询当前事务隔…...

剑指offer面试题40 数组中只出现一次的数字

考察点 异或运算&#xff0c;与运算知识点 题目 分析 本题目要求数组中只出现一次的俩个数字&#xff0c;并且要求O(1)时间复杂度和空间复杂度。试想一下如果只有一个数字出现一次&#xff0c;那么针对全部元素做异或运算就可以了&#xff0c;因为相同元素异或为0。现在有俩…...

gitLab server version 13.12.1 is not supported

拉代码的时候&#xff0c;报的这个错&#xff0c;实际上就是因为gitLab 版本太低了&#xff0c;这里不准备升级版本&#xff0c;打算继续使用账号密码来拉取代码 在idea已经安装的插件中&#xff0c;去掉gitlab插件&#xff0c;如下&#xff1a; 之后再拉取代码&#xff0c;就…...

如何在 iPhone 上使用蓝牙鼠标

iPhone 不支持使用传统的鼠标指针。 然而&#xff0c;有一个名为“AssistiveTouch”的功能可以在屏幕上模拟类似光标的指针。 启用它的方法如下&#xff1a; 打开 iPhone 上的“设置”应用程序。转到“辅助功能”。向下滚动并选择“触摸”。点击“辅助触控”。切换开关以打开 …...

matlab simulink 电力系统同步发电机励磁系统的建模与仿真

1、内容简介 略 77-可以交流、咨询、答疑 电力系统同步发电机励磁系统的建模与仿真 建立MATLAB的同步发电机励磁调节系统仿真模型&#xff0c;最后建立了以PID和PSS为励磁控制方式的同步发电机励磁调节系统数学模型&#xff0c;在Simulink环境下进行了仿真&#xff0c;收到…...

AI新工具(20240320) AI创作一首属于自己的音乐; 轻松制作具有透明背景的高质量图像

✨ 1: Suno AI创作一首属于自己的音乐 Suno是一个革命性的人工智能平台&#xff0c;专注于音乐创作。在通俗的语言中&#xff0c;Suno允许用户仅通过提供歌词&#xff0c;自动为其创作旋律和演唱&#xff0c;产生完整的音乐作品。使用Suno的过程简单直观&#xff0c;不需要用…...

IT服务ITIL4 认证:助力企业数字化转型的必杀技!

随着科技的不断展和企业竞争的加剧&#xff0c;如何实现数字化转型成为了当今企业面临的重要课题。而学习ITIL4认证&#xff0c;尤其是ITIL4中级&#xff0c;将为企业的数字化转型提供有力的支持和帮助。 ITIL4认证 ITIL&#xff08;Information Technology Infrastructure Li…...

微软聘请了谷歌DeepMind的联合创始人

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

JavaMySQL高级一(下)

目录 1.常用函数 1.字符串函数 2.时间日期函数 3.聚合函数 4.数学函数 2.分布查询 3.子查询基础 1.简单子查询 1.常用函数 在程序开发过程中&#xff0c;除了简单的数据查询&#xff0c;还有基于已数据进行数据的统计分析计算等需求。因此&#xff0c;在SQL中将一…...

HCIA复习

上面的文件里有思维导图哦~ 一、情景再现&#xff1a;ISP网络为学校提供了DNS服务&#xff0c;所以&#xff0c;DNS服务器驻留在ISP网络内&#xff0c;而不再学校网络内。DHCP服务器运行在学校网络的路由器上。 小明拿了一台电脑&#xff0c;通过网线&#xff0c;接入到校园网…...

5G里面NR,gNB,en-gNB,ng-eNB是什么意思

不得不提一个国际组织&#xff0c;叫国际电信联盟(ITU, International Telecommunication Union)&#xff0c;简称国际电联。我们先看看国际电联的自我介绍&#xff1a; 国际电信联盟 『国际电联 (国际电信联盟) 是主管信息通信技术事务&#xff08;ICT&#xff09;的联合国机…...

android 网络检测简单方法

如果连接的WiFi没有网络&#xff0c;无法通过简单的网络状态检查来判断其可用性。在这种情况下&#xff0c;你可以尝试使用以下方法来检测当前连接的WiFi是否可用&#xff1a; Ping测试&#xff1a;尝试通过向一个已知的可靠服务器发送Ping请求来检测连接的WiFi是否可用。如果…...

列表(list)篇(二)

文章目录 2.10 insert()函数2.11 list()函数2.12 pop() 函数2.13 remove()函数2.14 reverse()函数2.15 sort()函数2.16 sorted()函数2.17 sum()函数 2.10 insert()函数 在Python中&#xff0c;list.insert()是一个列表方法&#xff0c;用于在指定索引位置插入一个元素。这个方…...

Python的反射机制

本篇文章讨论Python中非常有趣且强大的概念——反射&#xff08;Reflection&#xff09;。想象一下&#xff0c;你正在编写一段代码&#xff0c;并希望这段代码能够具备自我认知和动态调整的能力。就好比一面镜子&#xff0c;能反映出它自身的属性和行为。在编程领域&#xff0…...

Python数学建模-2.9Matplotlib库

Matplotlib库是Python中一个非常流行的绘图库&#xff0c;它提供了大量的绘图工具&#xff0c;可以生成各种类型的静态、动态、交互式的图表。Matplotlib的设计初衷是为了与NumPy配合使用&#xff0c;从而提供一个强大的数学绘图工具。 1.Matplotlib的主要特点 丰富的图表类型…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...