当前位置: 首页 > news >正文

论文阅读:Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

论文链接
代码链接
这篇文章提出了Forget-Me-Not (FMN),用来消除文生图扩散模型中的特定内容。FMN的流程图如下:
framework
可以看到,FMN的损失函数是最小化要消除的概念对应的attention map的 L 2 L_2 L2范数。这里需要补充一些关于diffusion model的知识。
首先,以Stable Diffusion为代表的模型使用U-Net对图片的低维嵌入进行建模。文本条件在被CLIP的text encoder编码为文本嵌入后,通过U-Net中的cross-attention layers输入到U-Net中。cross-attention层的具体映射过程是一个QKV (Query-Key-
Value)结构,如上图的中间所示。其中,Q代表图片的视觉信息,K和V都是文本嵌入经过线性层后计算得到的( k i = W k c i a n d v i = W v c i k_i = W_kc_i~and~v_i = W_vc_i ki=Wkci and vi=Wvci)。而FMN损失函数中的attention map的计算过程如下:
attention map
然而,attention map还不是cross attention层的输出,其输出通过以下公式计算:
cross-attention output
上面两个公式,也就是图3中间方框中的内容,可以用下面的公式概括,
cross-attention
从FMN的源码中可以看到对应的部分如下:

class AttnController:def __init__(self) -> None:self.attn_probs = []self.logs = []def __call__(self, attn_prob, m_name) -> Any:bs, _ = self.concept_positions.shapehead_num = attn_prob.shape[0] // bstarget_attns = attn_prob.masked_select(self.concept_positions[:,None,:].repeat(head_num, 1, 1)).reshape(-1, self.concept_positions[0].sum())self.attn_probs.append(target_attns)self.logs.append(m_name)def set_concept_positions(self, concept_positions):self.concept_positions = concept_positionsdef loss(self):return torch.cat(self.attn_probs).norm()def zero_attn_probs(self):self.attn_probs = []self.logs = []self.concept_positions = None

相关文章:

论文阅读:Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models 论文链接 代码链接 这篇文章提出了Forget-Me-Not (FMN),用来消除文生图扩散模型中的特定内容。FMN的流程图如下: 可以看到,FMN的损失函数是最小化要消除的概念对应的…...

html5cssjs代码 036 CSS默认值

html5&css&js代码 036 CSS默认值 一、代码二、解释 CSS默认值(也称为浏览器默认样式)是指当HTML元素没有应用任何外部CSS样式时,浏览器自动为这些元素赋予的一组基本样式。这些样式是由浏览器的默认样式表(User Agent sty…...

小米路由器4A千兆版刷回官方固件

原文链接:小米路由器4A千兆版刷回官方固件及修改SN绑定APP-小米无线路由器及小米网络设备-恩山无线论坛 (right.com.cn) 进入breed 由于openwrt工作不稳定,决定重新刷回官方固件。 由于当前路由器已经刷过breed,不再重新刷入。 如何刷入b…...

【Leetcode每日一题】 递归 - 两两交换链表中的节点(难度⭐)(38)

1. 题目解析 题目链接:24. 两两交换链表中的节点 这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。 2.算法原理 一、理解递归函数的含义 首先,我们需要明确递归函数的任务:给定一个链表&#xf…...

如何部署GPT模型至自有服务器:从零开始搭建你的智能聊天机器人

引言 GPT模型是自然语言处理领域的重要突破,它能够通过生成式的文本生成方式,实现与用户的智能交互。本文将详细介绍如何将GPT模型部署到自有服务器上,并编写一个基本的API接口来实现与聊天机器人的交互。 目录 引言 一、准备工作 首先&am…...

uniapp 之 一些常用方法的封装(页面跳转,页面传参等)

util.js 提示:permission.js是uniapp插件市场由官方DCloud_heavensoft提供的App权限判断和提示插件。 import permision from "/js_sdk/wa-permission/permission.js"/*** uni.toast 封装* param {String} msg toast 提示内容* param {Number} duration …...

flutter 单列选择器

引入 flutter_pickers: ^2.1.9 import package:flutter_pickers/pickers.dart; import package:flutter_pickers/style/default_style.dart; import package:flutter_pickers/style/picker_style.dart;List<String> _numberList [99,98,97,96,95,94,93,92,91,90,89,88,…...

管理类联考–复试–英文面试–问题–WhatWhyHow--纯英文汇总版

文章目录 Do you have any hobbies? What are you interested in? What do you usually do in your spare time? Could you tell me something about your family&#xff1f; Could you briefly introduce your family? What is your hometown like? Please tell me so…...

亮数据代理IP轻松解决爬虫数据采集痛点

文章目录 一、爬虫数据采集痛点二、为什么使用代理IP可以解决&#xff1f;2.1 爬虫和代理IP的关系2.2 使用代理IP的好处 一、爬虫数据采集痛点 爬虫数据采集可能会面临一些挑战和痛点&#xff0c;其中包括&#xff1a; 爬虫代码维护难&#xff1a;网站的结构可能会经常变化&am…...

html5cssjs代码 035 课程表

html5&css&js代码 035 课程表 一、代码二、解释基本结构示例代码常用属性样式和装饰响应式表格辅助技术 一个具有亮蓝色背景的网页&#xff0c;其中包含一个样式化的表格用于展示一周课程安排。表格设计了交替行颜色、鼠标悬停效果以及亮色表头&#xff0c;并对单元格设…...

Eclipse For ABAP:安装依赖报错

1.安装好Eclipse后需要添加依赖,这里的地址: https://tools.hana.ondemand.com/latest 全部勾选等待安装结束; 重启后报错:ABAP communication layer is not configured properly. This might be caused by missing Microsoft Visual C++ 2013 (x64) Runtime DLLs. Consu…...

C++特性三:多态---纯析构和纯虚析构

多态使用时&#xff0c;如果子类中有属性开辟到堆区&#xff0c;那么父类指针在释放时无法调用到子类的析构代码 解决方式&#xff1a;将父类中的析构函数改为虚析构或者纯虚析构 虚析构和纯虚析构共性&#xff1a; 1.可以解决父类指针释放子类对象 2.都需要有具体的函数实现…...

创建可引导的 macOS 安装器

你可以将外置驱动器或备用宗卷用作安装 Mac 操作系统的启动磁盘。 以下高级步骤主要适用于系统管理员以及其他熟悉在“终端”中输入命令的经验丰富的用户。 升级 macOS 或重新安装 macOS 不需要可引导安装器&#xff0c;但如果你要在多台电脑上安装 macOS&#xff0c;而又不…...

ssm+vue的公廉租房维保系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的公廉租房维保系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…...

【pycharm】作为Array查看出现数据无法显示问题(已解决)

【pycharm】作为Array查看出现数据无法显示问题&#xff08;已解决&#xff09; 当我们在调试代码的时候&#xff0c;需要对某个变量进行查看&#xff0c;就如同在matlab中&#xff0c;我们可以直接在工作区对某个变量进行双击查看矩阵变量的具体数值 在这里我遇到一个问题&am…...

matlab处理贝塞尔函数

说明:问题来自CSDN-问答板块,题主提问。 需求:在使用解析法求解电机的三维模型,编写程序时需要用到修正的贝塞尔函数,问题是在贝塞尔函数的自变量和阶数变化时函数值变化很大,导致最后求出来的气隙磁密非常大。 一、运行截图 二、解决代码...

【Python】Pycharm 的 python_stubs

Pycharm 的 python_stubs 问题 问题 Pycharm 为了对各种库暴露接口能在编码时提供快速的智能提示&#xff0c;会解析库并在 pycharm 安装目录的 python_stubs 下生成对应的存根&#xff0c;这个操作可以有效的提升 Pycharm 智能提示的效率。但是也有一个问题&#xff0c;称之为…...

AI大模型智能大气科学探索之:ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作

本文深度探讨人工智能在大气科学中的应用&#xff0c;特别是如何结合最新AI模型与Python技术处理和分析气候数据。介绍包括GPT-4等先进AI工具&#xff0c;旨在帮助大家掌握这些工具的功能及应用范围。本文内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等案例…...

rpc详解rpc框架

文章目录 概述rpc的优点组件工作流程&RPC的底层原理RPC的底层原理 RPC框架rpc框架优点RPC 的实现基础RPC的应用场景RPC使用了哪些关键技术rpc 调用异常一般怎么处理rpc和http的区别为什么RPC要比HTTP更快一些Dubbo和openfeign 区别远程调用RPC框架传输协议传输速度 概述 在…...

【评分标准】【网络系统管理】2019年全国职业技能大赛高职组计算机网络应用赛项H卷 无线网络勘测设计

第一部分&#xff1a;无线网络勘测设计评分标准 序号评分项评分细项评分点说明评分方式分值1点位设计图AP编号AP编号符合“AP型号位置编号”完全匹配5AP型号独立办公室、小型会议室选用WALL AP110完全匹配5员工寝室选用智分&#xff0c;其他用放装完全匹配5其它区域选用放装AP…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...