Spark Rebalance hint的倾斜的处理(OptimizeSkewInRebalancePartitions)
背景
本文基于Spark 3.5.0
目前公司在做小文件合并的时候用到了 Spark Rebalance
这个算子,这个算子的主要作用是在AQE阶段的最后写文件的阶段进行小文件的合并,使得最后落盘的文件不会太大也不会太小,从而达到小文件合并的作用,这其中的主要原理是在于三个规则:OptimizeSkewInRebalancePartitions
,CoalesceShufflePartitions
,OptimizeShuffleWithLocalRead
,这里主要说一下OptimizeSkewInRebalancePartitions
规则,CoalesceShufflePartitions
的作用主要是进行文件的合并,是得文件不会太小,OptimizeShuffleWithLocalRead
的作用是加速shuffle fetch的速度。
结论
OptimizeSkewInRebalancePartitions
的作用是对小文件进行拆分,使得罗盘的文件不会太大,这个会有个问题,如果我们在使用Rebalance(col)
这种情况的时候,如果col
的值是固定的,比如说值永远是20240320
,那么这里就得注意一下,关于OptimizeSkewInRebalancePartitions
涉及到的参数spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled
,spark.sql.adaptive.advisoryPartitionSizeInBytes
,spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor
这些值配置,如果这些配置调整的不合适,就会导致写文件的时候有可能只有一个Task在运行,那么最终就只有一个文件。而且大大加长了整个任务的运行时间。
分析
直接到OptimizeSkewInRebalancePartitions
中的代码中来:
override def apply(plan: SparkPlan): SparkPlan = {if (!conf.getConf(SQLConf.ADAPTIVE_OPTIMIZE_SKEWS_IN_REBALANCE_PARTITIONS_ENABLED)) {return plan}plan transformUp {case stage: ShuffleQueryStageExec if isSupported(stage.shuffle) =>tryOptimizeSkewedPartitions(stage)}}
如果我们禁用掉对rebalance的倾斜处理,也就是spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled为false
(默认是true
),那么就不会应用此规则,那么如果Col
为固定值的情况下,就只会有一个Task进行文件的写入操作,也就只有一个文件,因为一个Task会拉取所有的Map的数据(因为此时每个maptask上的hash(Col)都是一样的,此时只有一个reduce task去拉取数据),如图:
假如说hash(col)为0,那实际上只有reduceTask0有数据,其他的ReduceTask1等等都是没有数据的,所以最终只有ReduceTask0写文件,并且只有一个文件。
在看合并的计算公式,该数据流如下:
tryOptimizeSkewedPartitions||\/optimizeSkewedPartitions||\/ShufflePartitionsUtil.createSkewPartitionSpecs||\/ShufflePartitionsUtil.splitSizeListByTargetSize
splitSizeListByTargetSize
方法中涉及到的参数解释如下 :
- 参数 sizes: Array[Long] 表示属于同一个reduce任务的maptask任务的大小数组,举例 sizes = [100,200,300,400]
表明该任务有4个maptask,0表示maptask为0的所属reduce的大小,1表示maptask为1的所属reduce的大小,依次类推,图解如下:
比如说reduceTask0的从Maptask拉取的数据的大小分别是100,200,300,400.
- 参数targetSize 为
spark.sql.adaptive.advisoryPartitionSizeInBytes
的值,假如说是256MB
- 参数smallPartitionFactor为
spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor
的值,默认是0.2
这里有个计算公式:
def tryMergePartitions() = {// When we are going to start a new partition, it's possible that the current partition or// the previous partition is very small and it's better to merge the current partition into// the previous partition.val shouldMergePartitions = lastPartitionSize > -1 &&((currentPartitionSize + lastPartitionSize) < targetSize * MERGED_PARTITION_FACTOR ||(currentPartitionSize < targetSize * smallPartitionFactor ||lastPartitionSize < targetSize * smallPartitionFactor))if (shouldMergePartitions) {// We decide to merge the current partition into the previous one, so the start index of// the current partition should be removed.partitionStartIndices.remove(partitionStartIndices.length - 1)lastPartitionSize += currentPartitionSize} else {lastPartitionSize = currentPartitionSize}}。。。while (i < sizes.length) {// If including the next size in the current partition exceeds the target size, package the// current partition and start a new partition.if (i > 0 && currentPartitionSize + sizes(i) > targetSize) {tryMergePartitions()partitionStartIndices += icurrentPartitionSize = sizes(i)} else {currentPartitionSize += sizes(i)}i += 1}tryMergePartitions()partitionStartIndices.toArray
这里的计算公式大致就是:从每个maptask中的获取到属于同一个reduce的数值,依次累加,如果大于targetSize就尝试合并,直至到最后一个maptask
,
可以看到tryMergePartitions
有个计算公式:currentPartitionSize < targetSize * smallPartitionFactor
,也就是说如果当前maptask的对应的reduce分区数据 小于 256MB*0.2 = 51.2MB
的话,也还是会合并到前一个分区中去,如果smallPartitionFactor
设置过大,可能会导致所有的分区都会合并到一个分区中去,最终会导致一个文件会有几十GB(也就是targetSize * smallPartitionFactor`*shuffleNum),
比如说以下的测试案例:
val targetSize = 100val smallPartitionFactor2 = 0.5// merge last two partition if their size is not bigger than smallPartitionFactor * targetval sizeList5 = Array[Long](50, 50, 40, 5)assert(ShufflePartitionsUtil.splitSizeListByTargetSize(sizeList5, targetSize, smallPartitionFactor2).toSeq ==Seq(0))val sizeList6 = Array[Long](40, 5, 50, 45)assert(ShufflePartitionsUtil.splitSizeListByTargetSize(sizeList6, targetSize, smallPartitionFactor2).toSeq ==Seq(0))
这种情况下,就会只有一个reduce任务运行。
相关文章:

Spark Rebalance hint的倾斜的处理(OptimizeSkewInRebalancePartitions)
背景 本文基于Spark 3.5.0 目前公司在做小文件合并的时候用到了 Spark Rebalance 这个算子,这个算子的主要作用是在AQE阶段的最后写文件的阶段进行小文件的合并,使得最后落盘的文件不会太大也不会太小,从而达到小文件合并的作用,…...

Vue 3中实现基于角色的权限认证实现思路
一、基于角色的权限认证主要步骤 在Vue 3中实现基于角色的权限认证通常涉及以下几个主要步骤: 定义角色和权限:首先需要在后端服务定义不同的角色和它们对应的权限。权限可以是对特定资源的访问权限,比如读取、写入、修改等。用户认证&#…...

Visual Studio 2022进行文件差异比较
前言 Visual Studio 2022在版本17.7.4中发布在解决方案资源管理器中比较文件的功能,通过使用此功能,可以轻松地查看两个文件之间的差异,包括添加、删除和修改的代码行。可以逐行查看差异,并根据需要手动调整和编辑文件内容以进行…...

1.2 编译型语言和解释型语言的区别
编译型语言和解释型语言的区别 通过高级语言编写的源码,我们能够轻松理解,但对于计算机来说,它只认识二进制指令,源码就是天书,根本无法识别。源码要想执行,必须先转换成二进制指令。 所谓二进制指令&…...
C语言-常量
什么是常量? 答:常量是在程序执行过程中,其值不发生改变的量,常量分为直接常量和符号常量两种。 其中直接常量又可以分为整型常量、实型常量、字符型常量、字符串常量。 直接常量 1.整型常量 整型常量即整数,包括正整数,负整数和0。c语言中常量可以用八进制,十进制和十六…...

开源的OCR工具基本使用:PaddleOCR/Tesseract/CnOCR
前言 因项目需要,调研了一下目前市面上一些开源的OCR工具,支持本地部署,非调用API,主要有PaddleOCR/CnOCR/chinese_lite OCR/EasyOCR/Tesseract/chineseocr/mmocr这几款产品。 本文主要尝试了EasyOCR/CnOCR/Tesseract/PaddleOCR这…...

vue3实现输入框短信验证码功能---全网始祖
组件功能分析 1.按键删除,清空当前input,并跳转prevInput & 获取焦点,按键delete,清空当前input,并跳转nextInput & 获取焦点。按键Home/End键,焦点跳转first/最后一个input输入框。ArrowLeft/ArrowRight键点击…...

[C#]winformYOLO区域检测任意形状区域绘制射线算法实现
【简单介绍】 Winform OpenCVSharp YOLO区域检测与任意形状区域射线绘制算法实现 在现代安全监控系统中,区域检测是一项至关重要的功能。通过使用Winform结合OpenCVSharp库,并结合YOLO(You Only Look Once)算法,我们…...

个人网站制作 Part 14 添加网站分析工具 | Web开发项目
文章目录 👩💻 基础Web开发练手项目系列:个人网站制作🚀 添加网站分析工具🔨使用Google Analytics🔧步骤 1: 注册Google Analytics账户🔧步骤 2: 获取跟踪代码 🔨使用Vue.js&#…...
数据按设定单位(分辨率)划分的方法
1. 问题描述 需要将使用公式计算后的float数值换算到固定间隔数轴的对应位置上的数据,比如2.186这个数据,将该数据换算到以0.25为间隔的数轴上,换算后是2.0,还是2.25呢?该方法就是解决这个问题。 2. 方法 输入&…...

Ubuntu 搭建gitlab服务器,及使用repo管理
一、GitLab安装与配置 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的Web服务。 1、安装Ubuntu系统(这个教程很多,就不展开了)。 2、安装gitlab社区版本,有需…...
QT(19)-QNetworkRequest
attribute(QNetworkRequest::Attribute code, const QVariant &defaultValue QVariant()) const 获取指定的请求属性。如果该属性未设置,则返回默认值。 hasRawHeader(const QByteArray &headerName) const 检查是否存在指定名称的原始请求头。 header(Q…...

基于Vue的社区旧衣回收利用系统的设计与实现
经济的高速发展使得每一个家庭的收入都获得了大幅增长,随之而来的就是各种梦想的逐步实现,首当其冲的就是各类衣服的更新换代而导致了大量旧衣物在家中的积存。为了帮助人们解决旧衣物处理的问题而以当前主流的互联网技术构建一个可于社区中实现旧衣回收…...

【网站项目】291校园疫情防控系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
win git filter-repo教程
git filter-repo 是一个用于过滤和清理 Git 仓库历史的工具,它可以高效地批量修改提交历史中的文件内容、删除文件、重命名文件以及进行其他历史重构操作。相较于 git filter-branch,它通常更快且更易于使用。 以下是一个基本示例,说明如何使…...

Redis相关操作高阶篇--集群搭建
Redis相关操作大全一篇全搞定-CSDN博客 Redis集群 是一个由多个主从节点群组成的分布式服务器群,它具有复制、高可用和分片特性。Redis集群不需要seninel哨兵也能完成节点移除和故障转移的功能。需要将每个节点 设置成集群模式,这种集群模式没有中心节…...

JNDI注入原理及利用IDEA漏洞复现
🍬 博主介绍👨🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收…...
大数据,或称巨量资料
大数据,或称巨量资料,指的是在传统数据处理应用软件不足以处理的大或复杂的数据集。大数据也可以定义为来自各种来源的大量非结构化或结构化数据。从学术角度而言,大数据的出现促成广泛主题的新颖研究,这也导致各种大数据统计方法…...

windows上打开redis服务闪退问题处理
方法1:在windows上面打开redis服务时,弹窗闪退可能是6379端口占用,可以用以下命令查看: netstat -aon | findstr 6379 如果端口被占用可以用这个命令解决: taskkill /f /pid 进程号 方法2: 可以使用…...

分布式锁简单实现
分布式锁 Redis分布式锁最简单的实现 想要实现分布式锁,必须要求 Redis 有「互斥」的能力,我们可以使用 SETNX 命令,这个命令表示SET if Not Exists,即如果 key 不存在,才会设置它的值,否则什么也不做。 …...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...