当前位置: 首页 > news >正文

LeetCode---126双周赛

题目列表

3079. 求出加密整数的和

3080. 执行操作标记数组中的元素

3081. 替换字符串中的问号使分数最小

3082. 求出所有子序列的能量和

一、求出加密整数的和

按照题目要求,直接模拟即可,代码如下

class Solution {
public:int sumOfEncryptedInt(vector<int>& nums) {int n=nums.size(),res=0;for(auto x:nums){int s = 0, mx = 0;while(x){mx=max(mx,x%10);s=s*10+1;x/=10;}res+=mx*s;}return res;}
};

二、执行操作标记数组中的元素

题目不难,依旧还是只需要模拟,但是代码量不少,要细心,思路如下:

对于每次查询的操作1:只要判断垓下标是否被标记,然后处理即可

对于每次查询的操作2:要把没有标记过的最小的k个数字标记,如果数字相同则下标小的先标记,很显然要排序(两个维度的排序---首先比较数值,其次比较下标),这里讲一个技巧:我们没必要将数值和下标打包在一起(即用pair)排序,我们可以直接对下标进行排序,具体看代码

如何表示一个数是否被标记?可以额外开一个数组,也可以直接在原数组上修改,将标记过的数记为-1

代码如下

class Solution {
public:vector<long long> unmarkedSumArray(vector<int>& nums, vector<vector<int>>& queries) {int n = nums.size(), m = queries.size();vector<long long> ans(m);vector<int>idx(n);long long s = 0;for(int i=0;i<n;i++) {idx[i]=i;s+=nums[i];}sort(idx.begin(),idx.end(),[&](int x,int y){return nums[x]!=nums[y]?nums[x]<nums[y]:x<y;});for(int i=0,j=0;i<m;i++){const auto& v = queries[i];int index = v[0], k = v[1];if(nums[index]>=0){s -= nums[index];nums[index] = -1;}while(k&&j<n){if(nums[idx[j]]<0){j++;continue;}s -= nums[idx[j]];nums[idx[j]]=-1;j++,k--;}ans[i]=s;}return ans;}
};

三、替换字符串中的问号使分数最小

这题是思维题:

首先我们要明白字母出现的顺序并不会影响它们对总分数的贡献(因为字母对分数的贡献仅仅只和该字母出现的次数有关,字母与其他字母之间是相互独立的),也就是说我们只要考虑每个 '?' 填哪个字母即可,根据cost的定义,我们优先考虑之前出现次数少的字母对 '?' 进行填充,当出现次数一样少时,我们优先考虑字典序小的字母,然后对选出的字母进行排序,最后按照 '?' 的位置进行替换即可。

代码如下

class Solution {
public:string minimizeStringValue(string s) {int n = s.size();string tmp;int cnt[26] = { 0 },c = 0;for(const auto& e:s){if(e!='?') cnt[e-'a']++;else c++;}auto cmp=[](const pair<int,int>& x,const pair<int,int>& y)->bool{return x.first!=y.first ? x.first > y.first : x.second > y.second;};priority_queue<pair<int,int>,vector<pair<int,int>>,decltype(cmp)> pq(cmp); //小堆for(int i=0;i<26;i++)pq.push({cnt[i],i});while(c--){auto [x,ch] = pq.top();pq.pop();pq.push({x+1,ch});tmp += 'a'+ch;}sort(tmp.begin(),tmp.end());for(int i=0,j=0;i<n;i++){if(s[i]=='?')s[i]=tmp[j++];}return s;}
};

四、求出所有子序列的能量和

这题找子序列中的子序列,看着很绕,其实就是找和为k的子序列能出现在多少个子序列中,即和为k的子序列做出的贡献,拿示例一举例:和为3的子序列有[1,2]和[3],其中[1,2]在2个子序列中出现,[3]在4个子序列中出现,所以答案为2+4=6。很显然每个和为3的子序列的贡献为2^(n-L),其中n为整个数组的长度,L为子序列的长度。

故答案的表达式为 sum(2^(n-L) * num_K_L) 1<=L<=n,num_K_L表示长为L,和为K的子序列个数

如何求长为L,和为K的子序列的个数?

这是一个背包问题,限制条件有两个:1、长为L  2、和为K

设f[i][L][c]表示前i个数中,长为L,和为c的子序列的个数

1、如果当前的数不在和为c的子序列中,则f[i][L][c]=f[i-1][L][c]

2、如果当前的数在和为c的子序列中,则f[i][L][c]=f[i-1][L-1][c-nums[i]]

所以f[i][L][c]=f[i-1][L][c]+f[i-1][L-1][c-nums[i-1]]

初始化:f[i][0][0]=1,因为长为0,和为0的子序列只能是空,只有一个

代码如下

class Solution {
public:int sumOfPower(vector<int>& nums, int k) {int n=nums.size();const int MOD = 1e9+7;int f[n+1][n+1][k+1];memset(f,0,sizeof(f));//f[i][L][j] = f[i-1][L][j] + f[i-1][L-1][j-nums[i]]for(int i=0;i<=n;i++)f[i][0][0]=1;for(int i=0;i<n;i++){for(int j=1;j<=k;j++){for(int L=1;L<=i+1;L++){f[i+1][L][j] = (f[i][L][j] + (j>=nums[i]?f[i][L-1][j-nums[i]]:0))%MOD;}}}long long ans = 0, pow2 = 1;for(int i=n;i>0;i--){ans = (ans + f[n][i][k]*pow2)%MOD;pow2 = pow2*2%MOD;}return ans%MOD;}
};// 优化空间
class Solution {
public:int sumOfPower(vector<int>& nums, int k) {int n=nums.size();const int MOD = 1e9+7;int f[n+1][k+1];memset(f,0,sizeof(f));f[0][0]=1;for(int i=0;i<n;i++){for(int j=k;j>=nums[i];j--){for(int L=1+i;L>0;L--){f[L][j] = (f[L][j] + f[L-1][j-nums[i]])%MOD;}}}long long ans = 0, pow2 = 1;for(int i=n;i>0;i--){ans = (ans + f[i][k]*pow2)%MOD;pow2 = pow2*2%MOD;}return ans%MOD;}
};

当然我们也可以根据题目直接定义状态:f[i][j]表示前i个数为数组的,元素和为k的能量值

1、如果nums[i]不在子序列和为k的序列中,那么它有选和不选两种可能,f[i+1][j]=f[i][j]*2

2、如果nums[i]在子序列和为k的序列中,那么它只能被选,f[i+1][j]=f[i][j-nums[i]]

举个例子[1,2,3],要求和为3,假设遍历到 i = 2 ,如果nums[i]=3不在我们想要的子序列中,那么它可以选,也可以不选,即f[i][j] * 2,如果nums[i]=3在我们想要的子序列中,那么它只能被选,即f[i][j-nums[i]]

所以状态转移方程为 f[i+1][j]=f[i][j] * 2+ f[i][j-nums[i]]

代码如下

class Solution {
public:int sumOfPower(vector<int>& nums, int k) {const int MOD=1e9+7;int n=nums.size();vector<vector<long long>>f(n+1,vector<long long>(k+1));f[0][0]=1;for(int i=0;i<n;i++){for(int j=0;j<=k;j++){f[i+1][j]=(f[i][j]*2+(j>=nums[i]?f[i][j-nums[i]]:0))%MOD;}}return f[n][k];}
};//优化空间
class Solution {
public:int sumOfPower(vector<int>& nums, int k) {const int MOD=1e9+7;int n=nums.size();vector<long long>f(k+1);f[0]=1;for(int i=0;i<n;i++){for(int j=k;j>=0;j--){f[j]=(f[j]*2+(j>=nums[i]?f[j-nums[i]]:0))%MOD;}}return f[k];}
};

相关文章:

LeetCode---126双周赛

题目列表 3079. 求出加密整数的和 3080. 执行操作标记数组中的元素 3081. 替换字符串中的问号使分数最小 3082. 求出所有子序列的能量和 一、求出加密整数的和 按照题目要求&#xff0c;直接模拟即可&#xff0c;代码如下 class Solution { public:int sumOfEncryptedInt…...

[python] ETL 工作流程 Prefect

Prefect 是一个用于构建、调度和监控数据流程的 Python 库。它提供了一种简单而强大的方式来管理 ETL&#xff08;Extract, Transform, Load&#xff09;工作流程。下面是一个简单的示例&#xff0c;演示了如何使用 Prefect 来创建和运行一个简单的任务&#xff1a; 首先&…...

html第一次作业

常用标签 0, 骨架&#xff08;&#xff01;tap&#xff09; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><t…...

基于java实现的KTV点歌系统

开发语言&#xff1a;Java 框架&#xff1a;ssm 技术&#xff1a;JSP JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclip…...

GPT+向量数据库+Function calling=垂直领域小助手

引言 将 GPT、向量数据库和 Function calling 结合起来&#xff0c;可以构建一个垂直领域小助手。例如&#xff0c;我们可以使用 GPT 来处理自然语言任务&#xff0c;使用向量数据库来存储和管理领域相关的数据&#xff0c;使用 Function calling 来实现领域相关的推理和计算规…...

DeepSeek-coder 微调训练记录

简介 微调过程不再细说, 参考link进行即可. 主要是数据集. 1.3b模型微调训练占用资源信息 top信息 评估 根据DeepSeek-coder的Evaluation试进行对微调后的模型进行评估. 其中的评估库主要是evol-teacher和human-eval. 新建一个eval_ins.sh文件, 填入以下内容 LANG"…...

【Android】【Bluetooth Stack】蓝牙音乐协议分析之音频控制与信息加载(超详细)

1. 精讲蓝牙协议栈(Bluetooth Stack):SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论 2. 欢迎大家关注和订阅,【蓝牙协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待! 目录 1. 音乐信息加载 1.1 歌曲信息 1.1.1 key_c…...

ChatGPT无法登录,提示我们检测到可疑的登录行为?如何解决?

OnlyFans 订阅教程移步&#xff1a;【保姆级】2024年最新Onlyfans订阅教程 Midjourney 订阅教程移步&#xff1a; 【一看就会】五分钟完成MidJourney订阅 GPT-4.0 升级教程移步&#xff1a;五分钟开通GPT4.0 如果你需要使用Wildcard开通GPT4、Midjourney或是Onlyfans的话&am…...

程序员表白

啥&#xff1f;&#xff01;你说程序员老实&#xff0c;认真工作&#xff0c;根本不会什么表白&#xff01;那你就错了&#xff01;(除了我) 那今天我们就来讲一下这几个代码&#xff01;赶紧复制下来&#xff0c;这些代码肯定有你有用的时候&#xff01; 1.Python爱心代码 im…...

CSS的使用与方法

什么是CSS CSS是层叠样式表。它是一种用于描述网页或者文档外观和样式的标记语言。 层级样式表&#xff1a;就是给HTML标签加样式的。 如果说HTML是个游戏英雄 、那么CSS就是游戏皮肤。 【一】注释语法 /* 注释 */ 【二】CSS的语法结构 选择符 {样式属性: 样式属性值;样…...

(保姆级)离线安装mongoDB集群

Docker搭建MongoDB集群 副本集模式&#xff08;Replica Set&#xff09; 是一种互为主从的关系&#xff0c; Replica Set 将数据复制多份保存&#xff0c;不同服务器保存同一份数据&#xff0c;在出现故障时自动切换&#xff0c;实现故障转移。 此集群拥有一个主节点和多个从…...

面试笔记——MySQL(主从同步原理、分库分表)

主从同步原理 主从同步结构&#xff1a;主库负责写数据&#xff0c;从库负责读数据&#xff0c;如图—— MySQL主从复制的核心就是二进制日志&#xff08;BINLOG&#xff09;&#xff0c;它记录了所有的 DDL&#xff08;数据定义语言&#xff09;语句和 DML&#xff08;数据操…...

面试题2.0

目录 css 动画 深拷贝和浅拷贝 ES6新特性 事件循环 vue-router原理 flex布局 session和local storage分别是用来干嘛的&#xff1f; http状态码 原型链 虚拟dom vuex的五个属性 vue路由跳转的四种方式 vue生命周期 link和import的区别 GET 与 POST 的区别 fle…...

【剑指offer】53. 最小的k个数(java选手)(优先队列+快排+快速选择)

题目链接 题目链接 力扣题目链接 题目描述 输入 n个整数&#xff0c;找出其中最小的 k 个数。 注意&#xff1a; 输出数组内元素请按从小到大顺序排序; 数据范围 1≤k≤n≤1000 样例 输入&#xff1a;[1,2,3,4,5,6,7,8] , k4 输出&#xff1a;[1,2,3,4] 题目分析 排序算法…...

带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化)

本次创作最主要是在MSCNN-BILSTM-ATTENTION模型&#xff08;可轻松替换为其它模型&#xff09;基础上&#xff0c;搭建GUI测试界面&#xff0c;方便对你想要测试的数据的进行测试&#xff0c;同时进行了全面的结果可视化&#xff1a;1.训练集和测试集的准确率曲线&#xff0c;2…...

【技术栈】Spring Cache 简化 Redis 缓存使用

​ SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;学习技术栈 个性签名&#xff1a;保留赤子之心也许是种幸运吧 ​ 本文封面由 凯楠&#x1f4f8; 友情提供 目录 本栏传送门 1. Spring Cache 介绍 2. Spring Cache 常用注解 注&#xff1a;手机端浏览本文章…...

解决wrap_socket() got an unexpected keyword argument ‘ciphers‘

看报错本以为是一个简单的传参问题&#xff0c;没想到查到盘丝洞。 # 报错信息 wrap_socket() got an unexpected keyword argument ciphers# 报错代码段 _exception_handler() def connect(self):u"""连接MySQL数据库"""self.config_connect_a…...

【力扣hot100】128.最长连续序列

给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1&#xff1a; 输入&#xff1a;nums [100,4,200,1,3,2] 输出&#xff1a;4 解…...

css的text-shadow详解

CSS的text-shadow属性用于为文本添加阴影效果&#xff0c;以增强文本的立体感和印刷品质感。该属性可以接受多个值&#xff0c;每个值通过空格分隔&#xff0c;以定义阴影的各个方面。以下是text-shadow属性的详细介绍&#xff1a; 阴影颜色 (Color): 这是阴影的颜色值。它可以…...

Qt 利用共享内存实现一次只能启动一个程序(单实例运行)

Qt 利用共享内存实现一次只能启动一个程序 文章目录 Qt 利用共享内存实现一次只能启动一个程序摘要利用共享内存实现一次只能启动一个程序示例代码 关键字&#xff1a; Qt、 unique、 单一、 QSharedMemory、 共享内存 摘要 今天接着在公司搞我的屎山代码&#xff0c;按照…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...