当前位置: 首页 > news >正文

【深度学习】四种天气分类 模版函数 从0到1手敲版本

引入该引入的库

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torchvision
import torch.optim as optim
%matplotlib inline
import os
import shutil
import glob
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

注意:os.environ[“KMP_DUPLICATE_LIB_OK”]=“TRUE” 必须要引入否则用plt出错

数据集整理

img_dir = r"F:\播放器\1、pytorch全套入门与实战项目\课程资料\参考代码和部分数据集\参考代码\参考代码\29-42节参考代码和数据集\四种天气图片数据集\dataset2"
base_dir = r"./dataset/4weather"img_list = glob.glob(img_dir+"/*.*")
test_dir = "test"
train_dir = "train"
species = ["cloudy","rain","shine","sunrise"]
for idx,img_path in enumerate(img_list):_,img_name = os.path.split(img_path)if idx%5==0:for specie in species:if img_path.find(specie) > -1:dst_dir = os.path.join(test_dir,specie)os.makedirs(dst_dir,exist_ok=True)dst_path = os.path.join(dst_dir,img_name)else:for specie in species:if img_path.find(specie) > -1:dst_dir = os.path.join(train_dir,specie)os.makedirs(dst_dir,exist_ok=True)dst_path = os.path.join(dst_dir,img_name)shutil.copy(img_path,dst_path)

生成测试和训练的文件夹,
目录结构如下:
在这里插入图片描述
rain 下面就是图片了
在这里插入图片描述

构建ds和dl

from torchvision import transforms
transform = transforms.Compose([transforms.Resize((96,96)),transforms.ToTensor(),transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5])])
train_ds=torchvision.datasets.ImageFolder(train_dir,transform)
test_ds = torchvision.datasets.ImageFolder(train_dir,transform)

在这里插入图片描述
在这里插入图片描述
一张图片效果,这是rain图片 这里需要转换维度,把channel放到最后。同时把数据拉到0-1之间,原本std 和mean 【0.5,0,5】数据在-0.5~0.5之间
在这里插入图片描述
类的映射
在这里插入图片描述

plt.figure(figsize=(12, 8))
for i, (img, label) in enumerate(zip(imgs[:6], labels[:6])):img = (img.permute(1, 2, 0).numpy() + 1)/2plt.subplot(2, 3, i+1)plt.title(id_to_class.get(label.item()))plt.imshow(img)

这个方法要学会
在这里插入图片描述

定义网络

class Net(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(3,16,3)self.conv2 = nn.Conv2d(16,32,3)self.conv3 = nn.Conv2d(32,64,3)self.pool = nn.MaxPool2d(2,2)self.dropout = nn.Dropout(0.3)self.fc1 = nn.Linear(64*10*10,1024)self.fc2 = nn.Linear(1024,4)def forward(self,x):x = F.relu(self.conv1(x))x = self.pool(x)x = F.relu(self.conv2(x))x = self.pool(x)x = F.relu(self.conv3(x))x = self.pool(x)x = self.dropout(x)# print(x.size()) 这里是可以计算出来的,需要掌握计算方法x = x.view(-1,64*10*10)x = F.relu(self.fc1(x))x = self.dropout(x)return self.fc2(x)
model = Net()        
preds = model(imgs)
preds.shape, preds

在这里插入图片描述
定义损失函数和优化函数:

loss_fn = nn.CrossEntropyLoss()
optim = torch.optim.Adam(model.parameters(),lr=0.001)

定义网络

def fit(epoch, model, trainloader, testloader):correct = 0total = 0running_loss = 0for x, y in trainloader:if torch.cuda.is_available():x, y = x.to('cuda'), y.to('cuda')y_pred = model(x)loss = loss_fn(y_pred, y)optim.zero_grad()loss.backward()optim.step()with torch.no_grad():y_pred = torch.argmax(y_pred, dim=1)correct += (y_pred == y).sum().item()total += y.size(0)running_loss += loss.item()epoch_loss = running_loss / len(trainloader.dataset)epoch_acc = correct / totaltest_correct = 0test_total = 0test_running_loss = 0 with torch.no_grad():for x, y in testloader:if torch.cuda.is_available():x, y = x.to('cuda'), y.to('cuda')y_pred = model(x)loss = loss_fn(y_pred, y)y_pred = torch.argmax(y_pred, dim=1)test_correct += (y_pred == y).sum().item()test_total += y.size(0)test_running_loss += loss.item()epoch_test_loss = test_running_loss / len(testloader.dataset)epoch_test_acc = test_correct / test_totalprint('epoch: ', epoch, 'loss: ', round(epoch_loss, 3),'accuracy:', round(epoch_acc, 3),'test_loss: ', round(epoch_test_loss, 3),'test_accuracy:', round(epoch_test_acc, 3))return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc

训练:

epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch,model,train_dl,test_dl)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)
epoch:  0 loss:  0.043 accuracy: 0.714 test_loss:  0.029 test_accuracy: 0.809
epoch:  1 loss:  0.03 accuracy: 0.807 test_loss:  0.023 test_accuracy: 0.867
epoch:  2 loss:  0.024 accuracy: 0.857 test_loss:  0.018 test_accuracy: 0.888
epoch:  3 loss:  0.021 accuracy: 0.869 test_loss:  0.017 test_accuracy: 0.894
epoch:  4 loss:  0.018 accuracy: 0.886 test_loss:  0.014 test_accuracy: 0.921
epoch:  5 loss:  0.017 accuracy: 0.897 test_loss:  0.022 test_accuracy: 0.869
epoch:  6 loss:  0.013 accuracy: 0.923 test_loss:  0.008 test_accuracy: 0.944
epoch:  7 loss:  0.009 accuracy: 0.947 test_loss:  0.011 test_accuracy: 0.924
epoch:  8 loss:  0.006 accuracy: 0.966 test_loss:  0.004 test_accuracy: 0.988
epoch:  9 loss:  0.004 accuracy: 0.979 test_loss:  0.002 test_accuracy: 0.998
epoch:  10 loss:  0.004 accuracy: 0.979 test_loss:  0.005 test_accuracy: 0.966

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
比较重要的点,
1.分类的数据集布局要记住
2.图片经过conv2 多次后的值要会算 todo
3.图片展示的方法要会

相关文章:

【深度学习】四种天气分类 模版函数 从0到1手敲版本

引入该引入的库 import torch import torch.nn as nn import matplotlib.pyplot as plt import torch.nn.functional as F import torchvision import torch.optim as optim %matplotlib inline import os import shutil import glob os.environ["KMP_DUPLICATE_LIB_OK&q…...

Linux文件 profile、bashrc、bash_profile区别

Linux系统中,有三种文件 出现的非常频繁,那就是 profile、bash_profile、bashrc 文件。 1、profile 作用 profile,路径:/etc/profile,用于设置系统级的环境变量和启动程序,在这个文件下配置会对所有用户…...

blender记一下法线烘焙

这里主要记一下使用cage的方式 原理 看起来是从cage发射射线,打中高模了就把对应uv那个地方的rgb改成打中的点的normal的rgb 正事 那么首先需要一个高模 主要是几何要丰富 无所谓UV 然后一个低模,既然上面提到UV,那低模就要展UV, 展完之后…...

【LabVIEW FPGA入门】FPGA 存储器(Memory)

可以使用内存项将数据存储在FPGA块内存中。内存项以2kb为倍数引用FPGA目标上的块内存。每个内存项引用一个单独的地址或地址块,您可以使用内存项访问FPGA上的所有可用内存。如果需要随机访问存储的数据,请使用内存项。 内存项不消耗FPGA上的逻辑资源&…...

vue3+element Plus form 作为子组件,从父组件如何赋值?

刚开始接触vue3时,碰到一个很low的问题,将form作为子组件,在页面中给form表单项输入内容,输入框不显示值,知道问题出在哪,但因为vue3组合式api不熟悉,不知从哪下手... 效果图: 父组…...

Kafka系列之:Exactly-once support

Kafka系列之:Exactly-once support 一、Sink connectors二、Source connectors三、Worker configuration四、ACL requirementsKafka Connect 能够为接收器连接器(从版本 0.11.0 开始)和源连接器(从版本 3.3.0 开始)提供一次性语义。请注意,对一次语义的支持高度依赖于您运…...

Spring Boot2

SpringBoot 配置文件 properties配置文件 application.properties 以配置端口和访问路径为例 server.port8080 yaml配置文件 application.yml / application.yaml server:port: 81 在实际开发中,更常用的是yaml配置文件 yaml层级表示更加明显 yml配置信息书…...

【idea做lua编辑器】IDEA下lua插件报错编辑器打不开(同时安装EmmyLua和Luanalysis这2个插件就报错,保留EmmyLua插件即可)

C:\Users\Administrator\AppData\Roaming\JetBrains\IntelliJIdea2021.1\plugins 同时安装EmmyLua和Luanalysis就报错,删除Luanalysis这个文件夹只使用EmmyLua这个插件即可! 为啥不用vscode呢? 我个人不太喜欢vscode,更喜欢idea&…...

SpringCloud之网关组件Gateway学习

SpringCloud之网关组件Gateway学习 GateWay简介 Spring Cloud Gateway是Spring Cloud的⼀个全新项目,目标是取代Netflix Zuul,它基于Spring5.0SpringBoot2.0WebFlux(基于高性能的Reactor模式响应式通信框架Netty,异步⾮阻塞模型…...

全球大型语言模型(LLMS)现状与比较

我用上个博文的工具将一篇ppt转换成了图片,现分享给各位看官。 第一部分:国外大语言模型介绍 1,openai的Chatgpt 免费使用方法1:choose-carhttps://share.freegpts.org/list 免费使用方法2:Shared Chathttps://share…...

Git Commit 提交规范,变更日志、版本发布自动化和 Emoji 提交标准

前言 Git Commit 是开发的日常操作, 一个优秀的 Commit Message 不仅有助于他人 Review, 还可以有效的输出 CHANGELOG, 对项目的管理实际至关重要, 但是实际工作中却常常被大家忽略,希望通过本文,能够帮助大家规范 Git Commit,并且展示相关 …...

Spark与flink计算引擎工作原理

Spark是大批量分布式计算引擎框架,scale语言开发的,核心技术是弹性分布式数据集(RDD)可以快速在内存中对数据集进行多次迭代,支持复杂的数据挖掘算法及图形计算算法,spark与Hadoop区别主要是spark多个作业之…...

Excel数字乱码怎么回事 Excel数字乱码怎么调回来

在日常工作中,Excel是我们最常使用的数据处理软件之一,它强大的功能使得数据处理变得既简单又高效。然而,用户在使用Excel时偶尔会遇到数字显示为乱码的问题,这不仅影响了数据的阅读,也大大降低了工作效率。那么&#…...

实例:NX二次开发使用链表进行拉伸功能(链表相关功能练习)

一、概述 在进行批量操作时经常会利用链表进行存放相应特征的TAG值,以便后续操作,最常见的就是拉伸功能。这里我们以拉伸功能为例子进行说明。 二、常用链表相关函数 UF_MODL_create_list 创建一个链表,并返回链表的头指针。…...

【VSTO开发】遍历 Ribbon 中的所有控件或按钮

在 VSTO(Visual Studio Tools for Office)中,可以通过代码来遍历 Ribbon 中的所有控件或按钮。可以使用 C# 或 VB.NET 等编程语言来实现这个功能。 下面是一个简单的示例代码,演示如何遍历 Ribbon 中的所有控件或按钮&#xff1a…...

上位机图像处理和嵌入式模块部署(qmacvisual图像识别)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 所谓图像识别,就是对图像进行分类处理,比如说判断图像上面的物体是飞机、还是蝴蝶。在深度学习和卷积神经网络CNN不像现在这…...

当Java 22遇到 SpringBoot 3.3.0!

工程 | JOSH LONG | 0条评论 Java 22发布快乐! Java 22 是一个重大的进步,是一个值得升级版本。有一些重大的最终发布功能,如 Project Panama及一系列更优秀的预览功能。我不可能覆盖它们全部,但我确实想谈谈我最喜爱的一些。我们…...

贪吃蛇(C语言超详细版)

目录 前言: 总览: API: 控制台程序(Console): 设置坐标: COORD: GetStdHandle: STD_OUTPUT_HANDLE参数: SetConsoleCursorPosition: …...

python(django)之流程接口管理后台开发

1、在models.py中加入流程接口表和单一接口表 代码如下: from django.db import models from product.models import Product# Create your models here.class Apitest(models.Model):apitestname models.CharField(流程接口名称, max_length64)apitester model…...

Hive入门

什么是hive? - Hive是Facebook开发并贡献给Hadoop开源社区的。它是建立在 Hadoop体系架构上的一层 SQL抽象,使得数据相关人 员使用他们最为熟悉的SQL语言就可以进行海量数据的处理、 分析和统计工作 - Hive将数据存储于HDFS的数据文件映射为一张数据库…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...