当前位置: 首页 > news >正文

解码新时代内存架构:探秘数据在内存中的灵动驻足

欢迎来到白刘的领域   Miracle_86.-CSDN博客

系列专栏  C语言知识

先赞后看,已成习惯

   创作不易,多多支持!

随着信息技术的飞速发展,我们身处一个数据爆炸的时代。数据的处理和存储方式正日益成为技术革新的重要领域。在新时代的内存架构中,数据的灵动驻足,正为计算世界注入无限活力。今天我们就来简单探讨一下数据在内存中的存储。

目录

一、整数在内存中的存储

二、大小端字节序和字节序判断

2.1 什么是大小端

2.2 为什么要有大小端

2.3 练习

练习1

 练习2

练习3

三、浮点数在内存中的存储

3.1 浮点数存的过程

3.2 浮点数取的过程

3.3 题目解析


一、整数在内存中的存储

前面在讲解操作符的时候,我们就提到了原码、反码、补码。这三个是整数的二进制的三种表示方法。

 武器大师——操作符详解(上)-CSDN博客

三种表示方法均有符号位数值位两部分,符号位都是由“ 0 ”表示“ 正 ”,“ 1 ”表示“ 负 ”,而数值位的最高一位被当做符号位,其余的都是数值位。

正整数的原、反、补码都相同。

负整数则各不相同,需要运算:

原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。

反码:原码的符号位不变,其它位都取反(也就是0变成1,1变成0)。

补码:就是在反码的基础上+1。

而对于整型来讲:数据在内存中存放的其实是补码。

为什么呢?

在计算机系统中,数值⼀律⽤补码来表⽰和存储。
原因在于,使⽤补码,可以将符号位和数值域统⼀处理;
同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。 

二、大小端字节序和字节序判断

当我们了解完整数在内存中的存储后,我们调试看会发现一个细节:

#include <stdio.h>
int main()
{int a = 0x11223344;return 0;
}

调试的时候我们可以看到a中的0x11223344这个数字是以字节为单位,倒着存储的。那它为什么不是正着存储的呢?

2.1 什么是大小端

其实超过一个字节的数据在内存中存储的时候,不可避免出现存储顺序的问题,按照不同的存储顺序,我们分为大端字节序和小端字节序。

大端(存储)模式:是指数据的字节内容保存在地址处,而数据的字节内容保存到地址处。

小端(存储)模式:是指数据的字节内容保存在地址处,而数据的字节内容保存到地址处。

2.2 为什么要有大小端

在计算机系统中,内存的基本组织单位是字节,每个内存地址单元都对应一个字节,即8位。然而,在编程语言如C语言中,除了8位的char类型外,还存在其他位宽的数据类型,如16位的short型和32位的long型(具体位宽可能因编译器而异)。

当使用位数大于8位的处理器,比如16位或32位处理器时,由于它们的寄存器宽度超过一个字节,这就涉及到了如何将多个字节组合在一起存储的问题。这种多字节数据的存储顺序问题导致了两种不同的字节序模式:大端字节序和小端字节序。

以16位的short型变量x为例,假设其在内存中的起始地址为0x0010,并且x的值为0x1122。在这里,0x11是高位字节,0x22是低位字节。如果采用大端字节序,高位字节0x11会被存放在较低的地址0x0010中,而低位字节0x22则存放在较高的地址0x0011中。相反,如果采用小端字节序,存储顺序则正好相反。

在我们常见的X86架构中,采用的是小端字节序。然而,不同的处理器架构或编程环境可能有不同的选择。例如,KEIL C51通常使用大端字节序,而许多ARM和DSP处理器则采用小端字节序。甚至有些ARM处理器允许通过硬件配置来选择使用大端字节序还是小端字节序。

2.3 练习

练习1

设计一个程序来判断当前机器的字节序。(10分)——百度笔试题。

//代码1
#include <stdio.h>
int check_sys()
{int i = 1;return (*(char*)&i);
}
int main()
{int ret = check_sys();if (ret == 1){printf("⼩端\n");}else{printf("⼤端\n");}return 0;
}

思路:我们知道整型1的原码是0x00 00 00 01(仅写8位做示例),如果按照小端字节序,它存放的应该是01 00 00 00;如果是大端则是00 00 00 01。那我们只需要判断第一个字节是00还是01即可,所以我们用到了强制类型转换,将其转换成char*。

//代码2
int check_sys()
{union{int i;char c;}un;un.i = 1;return un.c;
}

 第二种方法则用到了联合体,这段先放着,我们以后再来讲(继续挖坑ing)。

 练习2
#include <stdio.h>
int main()
{char a = -1;signed char b = -1;unsigned char c = -1;printf("a=%d,b=%d,c=%d", a, b, c);return 0;
}

这里先说一下什么是signed char以及unsigned char,正常的char我们都知道,存放一个字节,也就是8个比特位,而signed char是有符号字符型,说明它的最高位被当成了符号位,而unsigned char就是无符号的,那接下来就可以计算了。

//对于a://首先写出-1的原码   10000000 00000000 00000000 00000001
//反码              11111111 11111111 11111111 11111110
//补码              11111111 11111111 11111111 11111111
//由于a为char 所以只能存储一个字节,所以存储的为11111111
//继续计算,补码变成原码,取反+1,              10000001
//所以输出-1。//对于b,和a同理//对于c,因为它是无符号的,所以存储的为10000001,直接换算为255

来看运行结果:

练习3
#include <stdio.h>
int main()
{char a = -128;printf("%u\n", a);return 0;
}

如果想知道这题如何做,我们首先要知道%u是什么,它的意思是认为a中存放的是无符号整数。由于a为char类型,所以我们首先要进行整型提升。

//原码 10000000 00000000 00000000 10000000
//反码 11111111 11111111 11111111 01111111
//补码 11111111 11111111 11111111 10000000//由于%u,所以打印出来一个很大的数

 运行结果:

三、浮点数在内存中的存储

常见的浮点数:3.14159、1E10...浮点数家族包括:float、double、long double类型。

浮点数的范围:在<float.h>中定义。

#include <stdio.h>
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;printf("num的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}

来看运行结果:

上述代码的n和*pFloat明明存储的是一样的值为什么两次*pFloat的值不一样呢?

要理解这个结果的话,我们需要搞懂浮点数在计算机内部的存储方法。

3.1 浮点数存的过程

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:V=\left ( -1 \right )^{S}\ast M\ast 2^{E}(其中\left ( -1 \right )^{S}代表符号位,M代表有效数字,2^{E}代表指数位)。

举个例子:

十进制的5.0,写成二进制是101.0,相当于1.01*2²,S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01*2²,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高1位存储符号位S,之后的8位存储指数E,剩下的23位存储有效数字M;

对于64位的浮点数,最高1位存储符号位S,之后的11位存储指数E,剩下的23位存储有效数字M。

IEEE 754对M和E还有一些特殊规定。

前面说过,1≤M<2,也就是说M可以写成1.xxxxxxxxx,其中xxxxxxxxx是小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位是1,因此可以被舍去,只保存后面的小数部分。比如保存1.01时,只保存后面的01,等到读取的时候,再把前面的1加上,这样做的目的,是可以节省1位有效数字。以32位浮点数为例,留给M的只有23位,将1舍去后,就可以保留24位。

而至于指数E,情况就比较复杂了。

首先E是一个无符号整数(unsigned int)。

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

3.2 浮点数取的过程

E从内存中取出还可以分为三种情况:

E不全为0或不全为1

这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000,则其⼆进制表⽰形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的小数。这样做是为了表⽰±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s)。

0 11111111 00010000000000000000000

3.3 题目解析

之后我们再来回到题目

首先第一个问题,为什么9还原成浮点数,就变成了0.000000?

9以整型的形式存储在内存中,得到以下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

我们按照刚刚我们讲的,将其拆分,得到,S=0,E=00000000,剩下的是M。

所以V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然这是一个接近无穷小的一个数,保留即是0.000000。

再来看第二个问题,为什么浮点数9.0,整数打印是1091567616。

首先,9.0二进制为1001.0,即1.001*2³。

所以:9.0=(-1)º ×(1.001)×2³,

那么,第⼀位的符号位S=0,表示这是一个正数。有效数字M等于001后⾯再加20个0,凑满23位,即M的二进制10000010 

所以,写成⼆进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000
这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是
1091567616。

相关文章:

解码新时代内存架构:探秘数据在内存中的灵动驻足

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 随着信息技术的飞速发展&#xff0c;我们身处一个数据爆炸的时代。数据的处理和存储方式正日益成为技术革新的重要领域。在新时代的…...

前端基础篇-前端工程化 Vue 项目开发流程(环境准备、Element 组件库、Vue 路由、项目打包部署)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 环境准备 1.1 安装 NodeJs 1.2 验证 NodeJs 环境变量 1.3 配置 npm 的全局安装路径 1.4 切换 npm 的淘宝镜像( npm 使用国内淘宝镜像的方法(最新) ) 1.5 查看镜像…...

【通用人工智能AGI元年-各领域的精彩AI/LLM(持续更新)】

AI元年弄潮儿 通用人工智能AGI时代大模型LLM集成平台&#xff1a;Poe语言大模型&#xff1a;ChatGPT音乐&#xff1a;Suno文生图&#xff1a; [Stable Diffusion整合包](https://www.bilibili.com/video/BV1iM4y1y7oA/?spm_id_from333.999.0.0&vd_source260c69efcf1f56243…...

【微服务】设计弹性微服务架构模式

目录 模式#1 — 超时模式#2 — 重试模式#3— 隔离模式#4— 断路器模式#5 — 冗余推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战在微服务架构中,服务通常相互协作以提供业务用例。这些服务可能在可用性、可伸缩性、弹性等方面具有…...

Websocket + Vue使用

这里有一篇文档可以参考一下> 闪现 POM文件 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.7.0</version> </dependency> WebSocketConf…...

AI程序员革命:探析Devin的登场与编程未来

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…...

vue 控制窗口禁止缩放,已解决

注意&#xff1a;不是浏览器窗口禁止缩放 1.vue框架中&#xff0c;index.html文件head标签中加上内容 <meta name"viewport" content"widthdevice-width, initial-scale1, maximum-scale1, user-scalable0"><script>document.addEventListen…...

【黑马头条】-day01环境搭建SpringBoot-Cloud-Nacos

文章目录 1 环境搭建及简介2 项目介绍2.1 应用2.2 业务说明2.3 技术栈2.4 收获2.5 大纲 3 Nacos准备3.1 安装Nacos 4 初始工程搭建4.1 环境准备4.1.1 导入项目4.1.2 设置本地仓库4.1.3 设置项目编码格式 4.2 全局异常4.2.1 自动装配 4.3 工程主体结构 5 登录功能开发5.1 需求分…...

HTML发展史

为什么要讲 HTML 发展史呢&#xff1f; 唐太宗告诉我们: 以铜为镜&#xff0c;可以正衣冠&#xff1b;以史为镜&#xff0c;可以知兴替&#xff1b;以人为镜&#xff0c;可以明得失。 那了解了 HTML 的发展史&#xff0c;可以知道什么呢&#xff1f; 答案是兼容 国内在 淘宝…...

Java进阶—GC回收(垃圾回收)

1. 什么是垃圾回收 垃圾回收(Garbage Collection&#xff0c;GC)是Java虚拟机(JVM)的一项重要功能&#xff0c;用于自动管理程序中不再使用的内存。在Java中&#xff0c;程序员不需要手动释放内存&#xff0c;因为GC会自动检测并回收不再使用的对象&#xff0c;从而减少内存泄…...

C++默认构造函数(二)

目录 构造函数补充 构造函数初始化列表的使用 赋值运算符重载函数 运算符重载函数介绍 运算符重载函数的使用 赋值运算符重载函数 赋值运算符重载函数的使用 拷贝构造函数和赋值运算符重载函数 重载前置和后置 前置 后置 重载流插入<<与流提取>> 流插…...

云原生部署手册02:将本地应用部署至k8s集群

&#xff08;一&#xff09;部署集群镜像仓库 1. 集群配置 首先看一下集群配置&#xff1a; (base) ➜ ~ multipass ls Name State IPv4 Image master Running 192.168.64.5 Ubuntu 22.04 LTS1…...

AJAX——JSON

目录 一、JSON概述 二、JSON对象语法 三、JSON序列化方法 四、JSON与XML比较 五、Java对象与Json对象的转换 六、Js解析服务器发送过来的JSON字符串 七、$.getJSON() 一、JSON概述 JSON简介:JSON的全称为JavaScript Object Nation(JavaScript 对象表示语法)&#xff0c;…...

Nexus3 Docker 私有仓库

Nexus3 Docker 私有仓库 安装并部署 Nexus3 $ docker search nexus3$ docker pull sonatype/nexus3$ mkdir /home/tester/data/docker/nexus3/sonatype-work $ sudo chown -R 200 /home/tester/data/docker/nexus3/sonatype-work$ docker run -d --namenexus3 \ --restartalw…...

Element UI el-dialog自由拖动功能

1.创建drag .js文件 /*** 拖拽移动* param {elementObjct} bar 鼠标点击控制拖拽的元素* param {elementObjct} target 移动的元素* param {function} callback 移动后的回调*/ export function startDrag(bar, target, callback) {var params {top: 0,left: 0,currentX: …...

RPC浅析,加密数据解析

个人总结 其实就是HOOK注入wbsocket 链接创建服务端和客户端进行通信&#xff0c;直接调用js代码中的加密方法 将结果通过浏览器客户端传入服务端。一种比较好实用的一种技术 https://blog.csdn.net/qq_36759224/article/details/123082574 &#xff08;搬运记录下&#xff…...

光速论文能用吗 #媒体#知识分享#学习方法

光速论文是一个非常有效的论文写作、查重降重工具&#xff0c;它的使用非常简单方便&#xff0c;而且功能强大&#xff0c;是每个写作者必备的利器。 首先&#xff0c;光速论文具有强大的查重降重功能&#xff0c;能够快速检测论文中的抄袭部分&#xff0c;帮助作者避免不必要的…...

智慧工地解决方案,智慧工地项目管理系统源码,支持大屏端、PC端、手机端、平板端

智慧工地解决方案依托计算机技术、物联网、云计算、大数据、人工智能、VR&AR等技术相结合&#xff0c;为工程项目管理提供先进技术手段&#xff0c;构建工地现场智能监控和控制体系&#xff0c;弥补传统方法在监管中的缺陷&#xff0c;最线实现项目对人、机、料、法、环的全…...

【前端寻宝之路】学习和使用label标签

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-2nm9oQQVtSL8hDS1 {font-family:"trebuchet ms",verdana,arial,sans-serif;f…...

项目————网络聊天室

服务器 #include <myhead.h> typedef struct msg{char flag;char name[20];char cont[128]; }msg_t;typedef struct link{struct sockaddr_in cin;struct link* next; }link_t;void do_login(int sfd,msg_t msg,link_t *L,struct sockaddr_in cin){link_t* pL;if(sendto…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...