DBO优化GRNN回归预测(matlab代码)
DBO-GRNN回归预测matlab代码
蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。
数据为Excel股票预测数据。
数据集划分为训练集、验证集、测试集,比例为8:1:1
模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。
结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。
同时输出多个评价指标:
平均绝对误差(MAE)
平均相对误差(MAPE)
均方误差(MSE)
均方根误差(RMSE)
R方系数(R2)
代码有中文介绍。
代码能正常运行时不负责答疑!
代码运行结果如下:



部分代码如下:
% 清除命令窗口、工作区数据、图形窗口、警告
clc;
clear;
close all;
warning off;
load('data.mat')
data1 = readtable('股票价格.xlsx'); % 读取数据
data2=data1(:,2:end);
data=table2array(data1(:,2:end));
data_biao=data2.Properties.VariableNames; %数据特征的名称
A_data1=data;
data_select=A_data1; %% 数据划分
x_feature_label=data_select(:,1:end-1); %x特征
y_feature_label=data_select(:,end); %y标签
index_label1=1:(size(x_feature_label,1));
index_label=G_out_data.spilt_label_data; % 数据索引
if isempty(index_label) index_label=index_label1;
end
spilt_ri=G_out_data.spilt_rio; %划分比例 训练集:验证集:测试集
train_num=round(spilt_ri(1)/(sum(spilt_ri))*size(x_feature_label,1)); %训练集个数
vaild_num=round((spilt_ri(1)+spilt_ri(2))/(sum(spilt_ri))*size(x_feature_label,1)); %验证集个数
%训练集,验证集,测试集
train_x_feature_label=x_feature_label(index_label(1:train_num),:);
train_y_feature_label=y_feature_label(index_label(1:train_num),:);
vaild_x_feature_label=x_feature_label(index_label(train_num+1:vaild_num),:);
vaild_y_feature_label=y_feature_label(index_label(train_num+1:vaild_num),:);
test_x_feature_label=x_feature_label(index_label(vaild_num+1:end),:);
test_y_feature_label=y_feature_label(index_label(vaild_num+1:end),:);
相关文章:
DBO优化GRNN回归预测(matlab代码)
DBO-GRNN回归预测matlab代码 蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。 数据为Excel股票预测数据。 数据集划分为训练集、验证集、测试集,比例…...
Day 31 贪心01
理论基础 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。 贪心算法一般分为如下四步: 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优…...
C++11特性:std::lock_guard是否会引起死锁?
今天在评审代码的时候,因为位于两个不同的线程中(一个是周期性事件线程,一个是触发式事件线程),需要对一个资源类的某些属性进行互斥的访问,因此采用lock_guard互斥量包装器,但是在升级的过程中…...
stm32使用定时器实现PWM与呼吸灯
PWM介绍 STM32F103C8T6 PWM 资源: 高级定时器( TIM1 ): 7 路 通用定时器( TIM2~TIM4 ):各 4 路 例如定时器2 PWM 输出模式: PWM 模式 1 :在 向上计数 时࿰…...
MAC本安装telnet
Linux运维工具-ywtool 目录 1.打开终端1.先安装brew命令2.写入环境变量4.安装telnet 1.打开终端 访达 - 应用程序(左侧) - 实用工具(右侧) - 终端 #注意:登入终端用普通用户,不要用MAC的root用户1.先安装brew命令 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/H…...
[AIGC] 使用Spring Boot进行单元测试:一份指南
在现代软件开发过程中,确认你的应用正确运行是至关重要的一步。Spring Boot提供了一组实用工具和注解来辅助你在测试你的应用时,使得这个过程变得简单。下面就来分享一下如何在Spring Boot中进行单元测试。 文章目录 为什么需要单元测试Spring Boot单元测…...
使用 Go 语言统计 0-200000 的数字中,哪些是素数?
题目 使用 Go 语言统计 0-200000的数字中,哪些是素数? 思路 两种方法: 单循环遍历 1-200000 数字,并判断是否是素数。 使用了 Goroutine 和通道实现并发: 通过创建两个通道 intChan 和 primeChan,以及一…...
Fabric Measurement
Fabric Measurement 布料测量...
wayland(xdg_wm_base) + egl + opengles 使用 Assimp 加载材质文件Mtl 中的纹理图片最简实例(十六)
文章目录 前言一、3d 立方体 model 属性相关文件1. cube.obj2. cube.Mtl3. 纹理图片 cordeBouee4.jpg二、代码实例1. 依赖库和头文件1.1 assimp1.2 stb_image.h2. egl_wayland_obj_cube.cpp3. Matrix.h 和 Matrix.cpp4. xdg-shell-client-protocol.h 和 xdg-shell-protocol.c5.…...
面试常问:为什么 Vite 速度比 Webpack 快?
前言 最近作者在学习 webpack 相关的知识,之前一直对这个问题不是特别了解,甚至讲不出个123....,这个问题在面试中也是常见的,作者在学习的过程当中总结了以下几点,在这里分享给大家看一下,当然最重要的是…...
React腳手架已經創建好了,想使用Vite作為開發依賴
使用Vite作為開發依賴 安裝VITE配置VITE配置文件簡單的VITE配置項更改package.json中的scripts在根目錄中添加index.html現在可以瀏覽你的頁面了 安裝VITE 首先,在現有的React項目中安裝VITE npm install vite --save-dev || yarn add vite --dev配置VITE配置文件 …...
数据结构——双向链表(C语言版)
上一章:数据结构——单向链表(C语言版)-CSDN博客 目录 什么是双向链表? 双向链表的节点结构 双向链表的基本操作 完整的双向链表示例 总结 什么是双向链表? 双向链表是一种常见的数据结构,它由一系列节…...
缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题
一、缓存雪崩 简单理解:由于原有缓存失效,新缓存未到期间 (例如:设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成…...
深度学习pytorch——多层感知机反向传播(持续更新)
在讲解多层感知机反向传播之前,先来回顾一下多输出感知机的问题,下图是一个多输出感知机模型: 课时44 反向传播算法-1_哔哩哔哩_bilibili 根据上一次的分析深度学习pytorch——感知机(Perceptron)(持续更新…...
五、分布式锁-redission
源码仓库地址:gitgitee.com:chuangchuang-liu/hm-dingping.git 1、redission介绍 目前基于redis的setnx特性实现的自定义分布式锁仍存在的问题: 问题描述重入问题同一个线程无法多次获取统一把锁。当方法A成功获取锁后,调用方法B࿰…...
ARM的三个按键实验
main.c #include "key_inc.h"//封装延时函数void delay(int ms){int i,j;for(i0;i<ms;i){for(j0;j<2000;j){}}}int main(){//按键中断初始化key1_it_config();key2_it_config();key3_it_config();while(1){printf("in main pro\n");delay(1000);}re…...
高架学习笔记之需求工程
目录 一、什么是软件需求 二、需求工程 2.1. 需求获取 2.2. 需求分析 2.3. 形成需求规格 2.4. 需求确认 2.5. 需求管理 2.5.1. 变更控制 2.5.2. 版本控制 2.5.3. 需求跟踪 2.5.4. 需求状态跟踪 一、什么是软件需求 软件需求目前没有统一的定义,一般是指用…...
mysql基础2多表查询
多表查询 多表关系: 一对多 案例: 部门 与 员工的关系 关系: 一个部门对应多个员工,一个员工对应一个部门 实现: 在多的一方建立外键,指向一的一方的主键 多对多 案例: 学生 与 课程的关系 关系: 一个学生可以选修多门课程,一门课程也可以…...
Qt 写一个邮件发送程序
最近在完成一个邮箱代替的告警功能,写了一个邮件发送的demo 以下为代码: #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include<QTcpSocket> namespace Ui { class MainWindow; }class MainWindow : public QMainWin…...
swagger3快速使用
目录 🍿1.导入依赖 🌭2.添加配置文件 🧂3.添加注解 🥯4.访问客户端 1.导入依赖 引入swagger3的依赖包 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artif…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
