当前位置: 首页 > news >正文

DBO优化GRNN回归预测(matlab代码)

DBO-GRNN回归预测matlab代码

蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。

数据为Excel股票预测数据。

数据集划分为训练集、验证集、测试集,比例为8:1:1

模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。

数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。

结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。

同时输出多个评价指标:

平均绝对误差(MAE)

平均相对误差(MAPE)

均方误差(MSE)

均方根误差(RMSE)

R方系数(R2)

代码有中文介绍。

代码能正常运行时不负责答疑!

代码运行结果如下:

部分代码如下:
% 清除命令窗口、工作区数据、图形窗口、警告
clc;
clear;
close all;
warning off;
load('data.mat')	
data1 = readtable('股票价格.xlsx'); % 读取数据 	
data2=data1(:,2:end); 	
data=table2array(data1(:,2:end));	
data_biao=data2.Properties.VariableNames;  %数据特征的名称		
A_data1=data;		
data_select=A_data1;	%% 数据划分	
x_feature_label=data_select(:,1:end-1);    %x特征	
y_feature_label=data_select(:,end);          %y标签	
index_label1=1:(size(x_feature_label,1));	
index_label=G_out_data.spilt_label_data;  % 数据索引	
if isempty(index_label)	index_label=index_label1;	
end	
spilt_ri=G_out_data.spilt_rio;  %划分比例 训练集:验证集:测试集	
train_num=round(spilt_ri(1)/(sum(spilt_ri))*size(x_feature_label,1));          %训练集个数	
vaild_num=round((spilt_ri(1)+spilt_ri(2))/(sum(spilt_ri))*size(x_feature_label,1)); %验证集个数	
%训练集,验证集,测试集	
train_x_feature_label=x_feature_label(index_label(1:train_num),:);	
train_y_feature_label=y_feature_label(index_label(1:train_num),:);	
vaild_x_feature_label=x_feature_label(index_label(train_num+1:vaild_num),:);	
vaild_y_feature_label=y_feature_label(index_label(train_num+1:vaild_num),:);	
test_x_feature_label=x_feature_label(index_label(vaild_num+1:end),:);	
test_y_feature_label=y_feature_label(index_label(vaild_num+1:end),:);	

相关文章:

DBO优化GRNN回归预测(matlab代码)

DBO-GRNN回归预测matlab代码 蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。 数据为Excel股票预测数据。 数据集划分为训练集、验证集、测试集,比例…...

Day 31 贪心01

理论基础 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。 贪心算法一般分为如下四步: 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优…...

C++11特性:std::lock_guard是否会引起死锁?

今天在评审代码的时候,因为位于两个不同的线程中(一个是周期性事件线程,一个是触发式事件线程),需要对一个资源类的某些属性进行互斥的访问,因此采用lock_guard互斥量包装器,但是在升级的过程中…...

stm32使用定时器实现PWM与呼吸灯

PWM介绍 STM32F103C8T6 PWM 资源: 高级定时器( TIM1 ): 7 路 通用定时器( TIM2~TIM4 ):各 4 路 例如定时器2 PWM 输出模式: PWM 模式 1 :在 向上计数 时&#xff0…...

MAC本安装telnet

Linux运维工具-ywtool 目录 1.打开终端1.先安装brew命令2.写入环境变量4.安装telnet 1.打开终端 访达 - 应用程序(左侧) - 实用工具(右侧) - 终端 #注意:登入终端用普通用户,不要用MAC的root用户1.先安装brew命令 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/H…...

[AIGC] 使用Spring Boot进行单元测试:一份指南

在现代软件开发过程中,确认你的应用正确运行是至关重要的一步。Spring Boot提供了一组实用工具和注解来辅助你在测试你的应用时,使得这个过程变得简单。下面就来分享一下如何在Spring Boot中进行单元测试。 文章目录 为什么需要单元测试Spring Boot单元测…...

使用 Go 语言统计 0-200000 的数字中,哪些是素数?

题目 使用 Go 语言统计 0-200000的数字中,哪些是素数? 思路 两种方法: 单循环遍历 1-200000 数字,并判断是否是素数。 使用了 Goroutine 和通道实现并发: 通过创建两个通道 intChan 和 primeChan,以及一…...

Fabric Measurement

Fabric Measurement 布料测量...

wayland(xdg_wm_base) + egl + opengles 使用 Assimp 加载材质文件Mtl 中的纹理图片最简实例(十六)

文章目录 前言一、3d 立方体 model 属性相关文件1. cube.obj2. cube.Mtl3. 纹理图片 cordeBouee4.jpg二、代码实例1. 依赖库和头文件1.1 assimp1.2 stb_image.h2. egl_wayland_obj_cube.cpp3. Matrix.h 和 Matrix.cpp4. xdg-shell-client-protocol.h 和 xdg-shell-protocol.c5.…...

面试常问:为什么 Vite 速度比 Webpack 快?

前言 最近作者在学习 webpack 相关的知识,之前一直对这个问题不是特别了解,甚至讲不出个123....,这个问题在面试中也是常见的,作者在学习的过程当中总结了以下几点,在这里分享给大家看一下,当然最重要的是…...

React腳手架已經創建好了,想使用Vite作為開發依賴

使用Vite作為開發依賴 安裝VITE配置VITE配置文件簡單的VITE配置項更改package.json中的scripts在根目錄中添加index.html現在可以瀏覽你的頁面了 安裝VITE 首先,在現有的React項目中安裝VITE npm install vite --save-dev || yarn add vite --dev配置VITE配置文件 …...

数据结构——双向链表(C语言版)

上一章:数据结构——单向链表(C语言版)-CSDN博客 目录 什么是双向链表? 双向链表的节点结构 双向链表的基本操作 完整的双向链表示例 总结 什么是双向链表? 双向链表是一种常见的数据结构,它由一系列节…...

缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题

一、缓存雪崩 简单理解:由于原有缓存失效,新缓存未到期间 (例如:设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成…...

深度学习pytorch——多层感知机反向传播(持续更新)

在讲解多层感知机反向传播之前,先来回顾一下多输出感知机的问题,下图是一个多输出感知机模型: 课时44 反向传播算法-1_哔哩哔哩_bilibili 根据上一次的分析深度学习pytorch——感知机(Perceptron)(持续更新…...

五、分布式锁-redission

源码仓库地址:gitgitee.com:chuangchuang-liu/hm-dingping.git 1、redission介绍 目前基于redis的setnx特性实现的自定义分布式锁仍存在的问题: 问题描述重入问题同一个线程无法多次获取统一把锁。当方法A成功获取锁后,调用方法B&#xff0…...

ARM的三个按键实验

main.c #include "key_inc.h"//封装延时函数void delay(int ms){int i,j;for(i0;i<ms;i){for(j0;j<2000;j){}}}int main(){//按键中断初始化key1_it_config();key2_it_config();key3_it_config();while(1){printf("in main pro\n");delay(1000);}re…...

高架学习笔记之需求工程

目录 一、什么是软件需求 二、需求工程 2.1. 需求获取 2.2. 需求分析 2.3. 形成需求规格 2.4. 需求确认 2.5. 需求管理 2.5.1. 变更控制 2.5.2. 版本控制 2.5.3. 需求跟踪 2.5.4. 需求状态跟踪 一、什么是软件需求 软件需求目前没有统一的定义&#xff0c;一般是指用…...

mysql基础2多表查询

多表查询 多表关系: 一对多 案例: 部门 与 员工的关系 关系: 一个部门对应多个员工&#xff0c;一个员工对应一个部门 实现: 在多的一方建立外键&#xff0c;指向一的一方的主键 多对多 案例: 学生 与 课程的关系 关系: 一个学生可以选修多门课程&#xff0c;一门课程也可以…...

Qt 写一个邮件发送程序

最近在完成一个邮箱代替的告警功能&#xff0c;写了一个邮件发送的demo 以下为代码&#xff1a; #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include<QTcpSocket> namespace Ui { class MainWindow; }class MainWindow : public QMainWin…...

swagger3快速使用

目录 &#x1f37f;1.导入依赖 &#x1f32d;2.添加配置文件 &#x1f9c2;3.添加注解 &#x1f96f;4.访问客户端 1.导入依赖 引入swagger3的依赖包 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artif…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...