机器学习神经网络由哪些构成?
机器学习神经网络通常由以下几个主要组件构成:
1. **输入层(Input Layer)**:输入层接受来自数据源(例如图像、文本等)的原始输入数据。每个输入特征通常表示为输入层中的一个节点。
2. **隐藏层(Hidden Layers)**:隐藏层是在输入层和输出层之间的一系列层。每个隐藏层都由多个神经元(或节点)组成,其节点与上一层的所有节点相连接。隐藏层通过应用激活函数对输入数据进行非线性变换,从而学习数据中的复杂模式和特征。
3. **输出层(Output Layer)**:输出层产生模型的最终预测或输出。通常,输出层的节点数取决于模型要解决的问题的性质,例如分类问题可能具有与类别数量相等的输出节点。
4. **连接权重(Connection Weights)**:连接权重是连接输入层、隐藏层和输出层中的每个神经元之间的参数。这些权重表示网络学习过程中的可调整参数,用于调整网络的预测以最小化损失函数。
5. **偏置项(Bias Terms)**:偏置项是每个神经元的额外参数,用于调整网络的输出。它们允许模型适应训练数据中的偏差。
6. **激活函数(Activation Functions)**:激活函数是隐藏层中每个神经元的非线性变换函数。常见的激活函数包括ReLU(Rectified Linear Unit)、Sigmoid、Tanh等,它们引入了非线性性质,使得神经网络可以学习非线性关系。
7. **损失函数(Loss Function)**:损失函数衡量模型的预测输出与实际标签之间的差异。在训练过程中,模型的目标是最小化损失函数,以便使其预测尽可能接近真实值。
8. **优化算法(Optimization Algorithm)**:优化算法用于调整连接权重和偏置项,以最小化损失函数。常见的优化算法包括随机梯度下降(SGD)、Adam、Adagrad等。
这些组件共同构成了神经网络模型,其目标是从数据中学习复杂的模式和关系,并用于各种机器学习任务,如分类、回归、聚类等。
相关文章:
机器学习神经网络由哪些构成?
机器学习神经网络通常由以下几个主要组件构成: 1. **输入层(Input Layer)**:输入层接受来自数据源(例如图像、文本等)的原始输入数据。每个输入特征通常表示为输入层中的一个节点。 2. **隐藏层ÿ…...
代码随想录算法训练营day19 | 二叉树阶段性总结
各个部分题目的代码题解都在我往日的二叉树的博客中。 (day14到day22) 目录 二叉树理论基础二叉树的遍历方式深度优先遍历广度优先遍历 求二叉树的属性二叉树的修改与制造求二叉搜索树的属性二叉树公共最先问题二叉搜索树的修改与构造总结 二叉树理论基础 二叉树的理论基础参…...
数据库引论:3、中级SQL
一些更复杂的查询表达 3.1 连接表达式 拼接多张表的几种方式 3.1.1 自然连接 natural join,自动连接在所有共同属性上相同的元组 join… using( A 1 , A 2 , ⋯ A_1,A_2,\cdots A1,A2,⋯):使用括号里的属性进行自然连接,除了这些属性之外的共同…...
毕业设计:日志记录编写(3/17起更新中)
目录 3/171.配置阿里云python加速镜像:2. 安装python3.9版本3. 爬虫技术选择4. 数据抓取和整理5. 难点和挑战 3/241.数据库建表信息2.后续进度安排3. 数据处理和分析 3/17 当前周期目标:构建基本的python环境:运行爬虫程序 1.配置阿里云pytho…...
(一)基于IDEA的JAVA基础7
关系运算符 运算符 含义 范例 结果 等于 12 false ! 不等于 1!2 true > 大于 1>2 false < 小于 …...
MySQL数据库概念及MySQL的安装
文章目录 MySQL数据库一、数据库基本概念1、数据2、数据表3、数据库4、数据库管理系统(DBMS)4.1 数据库的建立和维护功能4.2 数据库的定义功能4.3 数据库的操纵功能4.4 数据库的运行管理功能4.5 数据库的通信功能(数据库与外界对接࿰…...
redis实际应用场景及并发问题的解决
业务场景 接下来要模拟的业务场景: 每当被普通攻击的时候,有千分之三的概率掉落金币,每回合最多爆出两个金币。 1.每个回合只有15秒。 2.每次普通攻击的时间间隔是0.5s 3.这个服务是一个集群(这个要求暂时不实现) 编写接口&…...
考研数学|汤家凤《1800》基础部分什么时候做完?
从我个人的经验来看,做完汤家凤1800的基础部分在第一轮复习中并不是必须的,但是可以作为一个有效的复习工具。 我认为汤家凤1800的基础部分确实涵盖了考研高数的基础知识点,并且题目难度适中,适合用来巩固基础。在第一轮复习中&a…...
JS的设计模式(23种)
JavaScript设计模式是指在JavaScript编程中普遍应用的一系列经过验证的最佳实践和可重用的解决方案模板,它们用来解决在软件设计中频繁出现的问题,如对象的创建、职责分配、对象间通信以及系统架构等。 设计模式并不特指某个具体的代码片段,…...
[自研开源] MyData v0.7.5 更新日志
开源地址:gitee | github 详细介绍:MyData 基于 Web API 的数据集成平台 部署文档:用 Docker 部署 MyData 使用手册:MyData 使用手册 试用体验:https://demo.mydata.work 交流Q群:430089673 介绍 MyData …...
3月份的倒数第二个周末有感
坐在图书馆的那一刻,忽然感觉时间的节奏开始放缓。今天周末因为我们两都有任务需要完成,所以就选了嘉定图书馆,不得不说嘉定新城远香湖附近的图书馆真的很有感觉。然我不经意回想起学校的时光,那是多么美好且短暂的时光。凝视着窗…...
Java 变得越来越像 Rust
Java 变得越来越像 Rust 介绍 随着编程的增强和复杂性越来越流行,许多编程语言也相互效仿。 Java 也不例外。 尽管社区内部存在问题,Rust 仍逐年赢得了开发人员的喜爱。并且有充分的理由:由于编译器,Rust 使开发人员能够避免整…...
通过git bash 或命令行ssh访问服务器 sftp上传下载文件
上传下载文件 sftp -P 端口 appywIP 示例:sftp -P 10022 appyw25.222.133.222 然后输入密码即可 ls 查看文件 lls 查看本地文件 cd 跳转 lcd 本地跳转 get ... 下载文件 put 本地文件名 远程文件夹 //上传文件 put -r 本地文件夹 远程文件夹 //上传文件夹服务器…...
27 OpenCV 凸包
文章目录 概念Graham扫描算法convexHull 凸包函数示例 概念 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。 正式定义: 包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选择Y方向最低…...
【GPT概念04】仅解码器(only decode)模型的解码策略
一、说明 在我之前的博客中,我们研究了关于生成式预训练转换器的整个概述,以及一篇关于生成式预训练转换器(GPT)的博客——预训练、微调和不同的用例应用。现在让我们看看所有仅解码器模型的解码策略是什么。 二、解码策略 在之前…...
蔚来-安全开发一面/二面
基本不怎么会渗透测试,本科期间有过大数据隐私保护(密码)的项目,硕士期间有个华为合作的项目一篇在投的ai安全论文 一面(45min) 1.介绍自己 2.介绍一下实习 3.场景题轰炸,主要针对实习中的场景,主要考察…...
Redis Cluster集群模式容器化部署
Redis Cluster集群模式容器化部署 安装Docker和docker-compose准备docker-compose文件准备Redis配置文件Linux内核参数优化启停Redis实例Redis集群搭建 环境准备: IP版本角色端口172.x.x.11RHEL 7.9master6379172.x.x.12RHEL 7.9master6379172.x.x.13RHEL 7.9maste…...
网络原理(6)——IP协议
目录 一、网段划分 现在的网络划分: 1、一般情况下的家庭网络环境 2、IP地址 3、子网掩码 4、网关 以前的网络划分: 二、特殊IP 1、环回 IP 2、主机号为全 0 的IP 3、广播地址IP 三、路由选择(路线规划) 一、网段划分…...
淘宝商品详情API接口:快速获取商品信息的高效工具
淘宝商品详情API接口:快速获取商品信息的高效工具 请求示例,API接口接入Anzexi58 在信息化、数字化的今天,数据已成为商业决策的重要依据。对于电商行业而言,快速准确地获取商品信息对于商家和消费者都至关重要。淘宝作为中国最大…...
一分钟学习Markdown语法
title: 一分钟学习Markdown语法 date: 2024/3/24 19:33:29 updated: 2024/3/24 19:33:29 tags: MD语法文本样式列表结构链接插入图片展示练习实践链接问题 欢迎来到Markdown语法的世界!Markdown是一种简单而直观的标记语言,让文本排版变得轻松有趣。接下…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
