当前位置: 首页 > news >正文

pycharm使用远程服务器的jupyter环境

1、确保服务器上安装了jupyter,如果没有,执行下面命令安装

pip install jupyter

2、启动jupyter notebook服务

jupyter notebook --no-browser --port=8888 --ip=0.0.0.0 --allow-root

表明在服务器的8888 端口上启动 Jupyter Notebook,并允许从任何 IP 地址访问。
3、在 PyCharm 中配置远程解释器
原文链接:https://blog.csdn.net/weixin_41377182/article/details/125462096?spm=1001.2014.3001.5502
4、配置 Jupyter Notebook
在这里插入图片描述
服务器执行完第二步骤之后,效果如图,注意token:
在这里插入图片描述
Python interpreter我用的服务器中的虚拟环境里面的。
Configured Server为:http://服务器ip:端口号/?token=×××
token为上图中的token
点apply,OK!

相关文章:

pycharm使用远程服务器的jupyter环境

1、确保服务器上安装了jupyter,如果没有,执行下面命令安装 pip install jupyter2、启动jupyter notebook服务 jupyter notebook --no-browser --port8888 --ip0.0.0.0 --allow-root表明在服务器的8888 端口上启动 Jupyter Notebook,并允许从任何 IP 地…...

ES6 基础

文章目录 1. 初识 ES62. let 声明变量3. const 声明常量4. 解构赋值 1. 初识 ES6 ECMAScript6.0(以下简称ES6)是JavaScript语言的下一代标准,已经在2015年6月正式发布了。它的目标,是使得」JavaScript语言可以用来编写复杂的大型应用程序,成为…...

【双指针】Leetcode 有效三角形的个数

题目解析 611. 有效三角形的个数 算法讲解 回顾知识&#xff1a;任意两数之和大于第三数就可以构成三角形 算法 1&#xff1a;暴力枚举 int triangleNumber(vector<int>& nums) {// 1. 排序sort(nums.begin(), nums.end());int n nums.size(), ret 0;// 2. 从…...

python项目练习——4.手写数字识别

使用Python和Scikit-learn库进行机器学习模型训练的项目——手写数字识别。 项目分析&#xff1a; 数据准备&#xff1a;使用公开数据集&#xff08;如MNIST&#xff09;作为训练和测试数据。数据预处理&#xff1a;对图像数据进行归一化、展平等操作&#xff0c;以便输入到机…...

【目标检测】NMS算法的理论讲解

将NMS就必须先讲IOU&#xff0c; IOU就是交并比&#xff0c;两个检测框的交集除以两个检测框的并集就是IOU 为什么要做NMS操作&#xff0c;因为要去除同一个物体的多的冗余检测框 那么NMS算法是如何做的呢&#xff1f; 以上是算法的流程图 下面讲解算法的流程 首先输入是预…...

3-iperf3 使用什么工具可以检测网络带宽、延迟和数据包丢失率等网络性能参数呢?

(1)iperf3简介 1.iperf3简介 2.用途&#xff08;特点&#xff09; 3.下载iperf3地址 &#xff08;2&#xff09;实战 1.iperf3参数 &#xff08;1&#xff09;通用参数&#xff08;客户端和服务器端都是适用的&#xff09; &#xff08;2&#xff09;客户端参数 实验1&…...

阳光倒灌高准直汽车抬头显示器HUD太阳光模拟器

阳光倒灌高准直汽车抬头显示器HUD太阳光模拟器是一种高级别的模拟设备&#xff0c;用于模拟太阳光的光谱、强度及照射角度&#xff0c;应用于太阳能电池板、光伏系统等领域的研究和测试。其参数包括光谱范围、光强度、光源、照射角度、均匀性和稳定性&#xff0c;可根据需求调整…...

jdk11中自定义java类在jvm是如何被查找、加载

yym带你了解jvm源码&#xff0c;openjdk11源码&#xff0c;java类jvm加载原理 jdk11中java类在jvm是如何被1查找、2加载 以下说明的是MiDept类是如何被java classloader 和 jvm加载步骤 上源代码 public static void main(String[] args) {Thread.currentThread().setName…...

单片机---独立按键

[3-1] 独立按键控制LED亮灭_哔哩哔哩_bilibili 按下的时候连接&#xff0c;松开的时候断开。 一头接GND&#xff08;电源负极&#xff09;&#xff0c;另一头接I/O口。 单片机上电时&#xff0c;所有I/O口为高电平。 按键没有按下&#xff0c;I/O口为高电平。 按键按下&…...

java分布式面试快问快答

目录 Java分布式面试宝典50题DubboRedisZookeeper分布式系统设计性能优化与监控安全实践经验 解答DubboRedisZookeeper分布式系统性能优化与监控安全 Java分布式面试宝典50题 Java分布式开发涉及到Dubbo、Redis、Zookeeper等技术&#xff0c;这些技术在实际工作中扮演着重要角…...

AI:148-开发一种智能语音助手,能够理解和执行复杂任务

AI&#xff1a;148-开发一种智能语音助手&#xff0c;能够理解和执行复杂任务 1.背景介绍 随着人工智能技术的飞速发展&#xff0c;智能语音助手已经逐渐成为人们日常生活中不可或缺的一部分。从简单的查询天气、播放音乐&#xff0c;到复杂的日程安排、智能家居控制&#xf…...

Kindling the Darkness:A Practical Low-light Image Enhancer

Abstract 在弱光条件下拍摄的图像通常会出现&#xff08;部分&#xff09;可见度较差的情况。,除了令人不满意的照明之外&#xff0c;多种类型的退化也隐藏在黑暗中&#xff0c;例如由于相机质量有限而导致的噪点和颜色失真。,换句话说&#xff0c;仅仅调高黑暗区域的亮度将不…...

图像处理与视觉感知---期末复习重点(4)

文章目录 一、图像复原与图像增强1.1 概述1.2 异同点 二、图像复原/退化模型2.1 模型图简介2.2 线性复原法 三、彩色基础四、彩色模型五、彩色图像处理 一、图像复原与图像增强 1.1 概述 1. 图像增强技术一般要利用人的视觉系统特性&#xff0c;目的是取得较好的视觉效果&…...

ABAP AMDP 示例

AMDP 是HANA开发中的一种优化模式 按SAP的官方建议&#xff0c;在可以使用Open SQL实现需要的功能或优化目标的时候&#xff0c;不建议使用AMDP。而在需要使用Open SQL不支持的特性&#xff0c;或者是大量处理流和分析导致了数据库和应用服务器之间有重复的大量数据传输的情况…...

发票查验接口C++语言如何集成、发票OCR

说起发票查验工作&#xff0c;繁琐的发票信息录入与反复查验令财务人员头疼不已。数字化时代&#xff0c;企业财务管理的自动化需求越来越高&#xff0c;翔云发票查验API搭配发票识别接口为企业提供一种高效的财务管理解决方案。仅需上传发票图片即可快速提取发票四要素信息&am…...

【图论 | 数据结构】用链式前向星存图(保姆级教程,详细图解+完整代码)

一、概述 链式前向星是一种用于存储图的数据结构,特别适合于存储稀疏图,它可以有效地存储图的边和节点信息,以及边的权重。 它的主要思想是将每个节点的所有出边存储在一起,通过数组的方式连接(类似静态数组实现链表)。这种方法的优点是存储空间小,查询速度快,尤其适…...

【蓝桥杯3.23小白赛】(详解)

第一题签到题不多说 【二进制王国】 #include <iostream> #include <vector> #include <algorithm> using namespace std;//int Cmp(string s1, string s2)测试了一下时间差确实很明显&#xff0c;还是用下面的内个 int Cmp(const string &s1,const st…...

设计模式之抽象工厂模式精讲

概念&#xff1a;为创建一组相关或相互依赖的对象提供一个接口&#xff0c;而且无须指定他们的具体类。 抽象工厂模式是工厂方法模式的升级版本。在存在多个业务品种或分类时&#xff0c;抽象工厂模式是一种更好的解决方式。 抽象工厂模式的UML类图如下&#xff1a; 可以看…...

初识云原生、虚拟化、DevOps

文章目录 K8S虚拟化DevOpsdevops平台搭建工具大数据架构 K8S master 主节点&#xff0c;控制平台&#xff0c;Master节点负责核心的调度、管理和运维&#xff0c;不需要很高性能&#xff0c;不跑任务&#xff0c;通常一个就行了&#xff0c;也可以开多个主节点来提高集群可用度…...

怎麼實現Nginx反向代理?

Nginx是一款開源軟體&#xff0c;可以作為Web伺服器、負載均衡器和反向代理使用&#xff0c;是高性能的HTTP和反向代理伺服器。其中反向代理是Nginx的一項重要特性。接下來&#xff0c;我們詳細講一下Nginx反向代理的實現和應用。 反向代理是什麼&#xff1f; 代理一詞通常指的…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...