软件杯 深度学习 机器视觉 人脸识别系统 - opencv python
文章目录
- 0 前言
- 1 机器学习-人脸识别过程
- 人脸检测
- 人脸对其
- 人脸特征向量化
- 人脸识别
- 2 深度学习-人脸识别过程
- 人脸检测
- 人脸识别
- Metric Larning
- 3 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 深度学习 机器视觉 人脸识别系统
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:3分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 机器学习-人脸识别过程
基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。
机器学习-人脸识别系统都包括:
- 人脸检测
- 人脸对其
- 人脸特征向量化
- 人脸识别
人脸检测
人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:
人脸对其
同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。
所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。
它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。
下图是一个典型的人脸图像对齐过程:
这幅图就更加直观了:
人脸特征向量化
这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。
但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。
所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的
PCA人脸特征向量降维示例代码:
#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if (array(weiVec-TrainVec)**2).sum() < resVal:res = iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList)) # 求出正确率
人脸识别
这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。
比如:贝叶斯分类器,决策树,SVM等机器学习方法。
从而达到识别人脸的目的。
这里分享一个svm训练的人脸识别模型:
from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue: %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()
2 深度学习-人脸识别过程
不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。
深度学习-人脸识别系统都包括:
- 人脸检测
- 人脸对其
- 人脸识别
人脸检测
深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。
MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。
人脸识别
人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。
我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。
Metric Larning
深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。
Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。
3 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

软件杯 深度学习 机器视觉 人脸识别系统 - opencv python
文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目…...

IDEA | 资源文件中文乱码问题解决
问题 IDEA打开资源文件,显示乱码问题。 解决方案 1、电脑是mac,点击IDEA->【Preferences】->【Editor】->【File Encodings】 2、选择【Properties Files】中的UTF-8,并勾选Transparent native-to-ascii conversion。 3、最后点击…...

Linux系统使用Docker部署Portainer结合内网穿透实现远程管理容器和镜像
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

【Git篇】复习git
文章目录 🍔什么是git⭐git和svn的区别 🍔搭建本地仓库🍔克隆远程仓库🛸git常用命令 🍔什么是git Git是一种分布式版本控制系统,它可以追踪文件的变化、协调多人在同一个项目上的工作、恢复文件的旧版本等…...

[LitCTF 2023]程序和人有一个能跑就行了
新知识 seh 表面上的逻辑蛮简单的 int __cdecl main(int argc, const char **argv, const char **envp) {_DWORD *v3; // eax_DWORD *v5; // eaxchar *v6; // eaxint v7; // [esp0h] [ebp-2ACh] BYREFint v8; // [esp14h] [ebp-298h]int *v9; // [esp18h] [ebp-294h]int v10;…...

如何在群晖NAS搭建bitwarden密码管理软件并实现无公网IP远程访问
前言 作者简介: 懒大王敲代码,计算机专业应届生 今天给大家聊聊如何在群晖NAS搭建bitwarden密码管理软件并实现无公网IP远程访问,希望大家能觉得实用! 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&am…...

perl:获取同花顺数据--业绩快报,业绩公告
perldoc LWP::UserAgent 如果没有安装,则安装模块,运行 cpanm LWP::UserAgent 。 编写 get_yjkb_10jqka.pl 如下 #!/usr/bin/perl # perl 获取同花顺数据--业绩快报 use LWP::UserAgent; use Encode qw(decode encode); use POSIX; use Data::Dump…...

FPGA选型
开发FPGA的第一步,就是选择一片符合设计需求的芯片。 专用资源 选片第一个关注的应该是FPGA器件的专用资源。例如是否需要高速接口,如果需要的话,需要多少个通道,各个通道需要的最高收发速度是多少。同样,如果需要实…...

centos系统的root密码忘记或失效的解决办法(超详细)
文章目录 1、概述2、现象描述3、解决步骤3.1 进入单机维护模式3.2 修改启动参数3.3 在维护模式下修改密码3.4 重启 4、总结 1、概述 在Linux系统中,root用户是最高权限的用户,可以执行任何命令和操作。但是,如果我们忘记了root用户的密码&…...

【Android 源码】Android源码下载指南
文章目录 前言安装Repo初始化Repo选择分支没有梯子替换为清华源 有梯子 下载源码下载开始参考 前言 这是关于Android源码下载的过程记录。 环境:Windows上通过VMware安装的Ubuntu系统 安装Repo 创建Repo文件目录 mkdir ~/bin PATH~/bin:$PATH下载Repo工具&#…...

MySQL数据库高级语句
文章目录 MySQL高级语句older by 排序区间判断查询或与且(or 与and)嵌套查询(多条件)查询不重复记录distinctcount 计数限制结果条目limit别名as常用通配符嵌套查询(子查询)同表不同表嵌套查询还能用于删除…...

软件测试【理论基础】
软件测试的IEEE定义:使用人工或自动的手段来运行或测量软件系统的过程,目的是检验软件系统是否满足规定的需求,并找出与预期结果之间的差异。 软件测试的发展趋势: ① 测试工作将进一步前移。软件测试不仅仅是单元测试、集成测试、系统测试…...

蓝桥杯每日一题(floyd算法)
4074 铁路与公路 如果两个城市之间有铁路t11,公路就会t2>1,没铁路的时候t1>1,公路t21。也就是公路铁路永远都不会相等。我们只需要计算通过公路和铁路从1到n最大的那个即可。 floyd是直接在数组上更新距离。不需要新建dis数组。另外一定要记得把邻接矩阵初始…...

文心一言 VS 讯飞星火 VS chatgpt (224)-- 算法导论16.3 6题
六、假定我们有字母表 C{0,1,…,n-1} 上的一个最优前缀码,我们希望用最少的二进制位传输此编码。说明如何仅用 2n-1n⌈lgn⌉ 位表示 C 上的任意最优前缀码。(提示:通过对树的遍历,用 2n-1 位说明编码树的结…...

flutter3_douyin:基于flutter3+dart3短视频直播实例|Flutter3.x仿抖音
flutter3-dylive 跨平台仿抖音短视频直播app实战项目。 全新原创基于flutter3.19.2dart3.3.0getx等技术开发仿抖音app实战项目。实现了类似抖音整屏丝滑式上下滑动视频、左右滑动切换页面模块,直播间进场/礼物动效,聊天等模块。 运用技术 编辑器&#x…...

VR全景赋能智慧农业,打造沉浸式种植体验平台
随着人口的增长,传统农业也正在面临着不一样的挑战,加上很多人对农业的固有印象,很少有年轻人愿意下到农田里,那么该如何提高产量、降低成本以及引导年轻人深刻感受现代农业成为了急需解决的问题。 随着城市化脚步的推进ÿ…...

百度文心一言(ERNIE bot)API接入Android应用
百度文心一言(ERNIE bot)API接入Android应用实践 - 拾一贰叁 - 博客园 (cnblogs.com) Preface: 现在生成式AI越来越强大了,想在android上实现一个对话助手的功能,大概摸索了一下接入百度文心一言API的方法。 与AI助手交换信息的…...

springboot基本使用八(mbatisplus+filter实现登录功能)
mybatisplus依赖: <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.2</version> </dependency> mysql依赖: <dependency><groupId>com.mysql<…...

蚂蚁庄园今天答案
蚂蚁庄园是一款爱心公益游戏,用户可以通过喂养小鸡,产生鸡蛋,并通过捐赠鸡蛋参与公益项目。用户每日完成答题就可以领取鸡饲料,使用鸡饲料喂鸡之后,会可以获得鸡蛋,可以通过鸡蛋来进行爱心捐赠。其中&#…...

第5章 数据建模和设计
思维导图 5.1 引言 最常见的6种模式:关系模式、多维模式、面向对象模式、 事实模式、时间序列模式和NoSQL模式 每种模式分为三层模型:概念模型、逻辑模型和物理模型 每种模型都包含一系列组件:如实体、关系、事实、键和属性。 5.1.1 业务驱…...

牛客NC108 最大正方形【中等 动态规划 Java,Go,PHP】
题目 题目链接: https://www.nowcoder.com/practice/0058c4092cec44c2975e38223f10470e 思路 动态规划: 先初始化第一行和第一列。然后其他单元格依赖自己的上边,左边和左上角参考答案Java import java.util.*;public class Solution {/*** 代码中的类…...

C#学生信息成绩管理系统
一、系统功能描述 本系统包括两类用户:学生、管理员。管理员可以通过系统来添加管理员信息、修改管理员信息、添加学生信息、修改学生信息;开设课程、查询课程、录入成绩、统计成绩、修改成绩、修改个人密码等,而学生则可以通过系统来选择课…...

精品凉拌菜系列热卤系列课程
这一系列课程涵盖精美凉拌菜和美味热卤菜的制作技巧。学员将学习如何选材、调味和烹饪,打造口感丰富、色香俱佳的菜肴。通过实践训练,掌握独特的烹饪技能,为家庭聚餐或职业厨艺提升增添亮点。 课程大小:6.6G 课程下载࿱…...

Java代码基础算法练习-求一个三位数的各位数字之和-2024.03.27
任务描述: 输入一个正整数n(取值范围:100<n<1000),然后输出每位数字之和 任务要求: 代码示例: package M0317_0331;import java.util.Scanner;public class m240327 {public static voi…...

Excel 十字交叉聚光灯查询,再也不用担心看串行与列
当Excel表格行列较多时,要想跟条件找到目标数据可以用查找引用函数自动调取,如果又想让找出来的结果突出显示,有什么好办法呢? 先来看一个做好的案例效果,用户选择查询条件后,结果突出显示。 当查询条件变…...

集合和字符串的使用
文章目录 一、集合概述二、Collection2.1 List接口2.2 Set接口(不常用)2.2.1 TreeSet 三、Map接口四、Collections工具类五、String六、String类型转换6.1 基本数据类型6.2 基本数据类型、包装类 --> String6.3 String与char[]6.4 String与byte[] 一、…...

Wagtail-基于Python Django的内容管理系统CMS实现公网访问
目录 ⛳️推荐 前言 1. 安装并运行Wagtail 1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具 3. 实现Wagtail公网访问 4. 固定Wagtail公网地址 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给…...

Python入门级题目及答案
前言: 学习Python作为一门编程语言是非常有必要的,因为Python简单易学,功能强大,应用广泛。在本篇博客中,我们将提供八道Python入门级的题目,每道题目都伴有详细的描述和对应的答案代码。通过完成这八道题目…...

【C语言基础】:字符串函数(二)
文章目录 一、strncpy函数的使用二、strncat函数的使用三、strncmp函数的使用四、strstr函数的使用和模拟实现4.1 strstr函数的使用4.2 strstr函数的模拟实现 五、strtok函数的使用六、strerror函数的使用 书山有路勤为径,学海无涯苦作舟。 创作不易,宝子…...

【Docker】Docker资源(创建容器)CPU/内存/磁盘IO/GPU限制与分配教程
Docker资源创建容器CPU/内存/磁盘IO/GPU限制与分配 一、关键概念解释二、Docker分配CPU资源限制三、Docker分配内存资源限制四、Docker容器中对磁盘IO进行限制五、Docker对GPU资源限制管理 一、关键概念解释 【cgroup】 cgroups名称源自控制组群(control g…...