当前位置: 首页 > news >正文

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型

一、YOLO V8

YOLO V8 是由 2023ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度要求较高的应用和领域。

网络结构如下图所示:

在这里插入图片描述

YOLO V8 相对于 YOLO V5还是有很大的不同,例如:YOLO V8 相对于 YOLO V5,依然使用的是CSP的思想,不过将 V5 中的C3模块换成了C2F模块,以减轻模型的大小,也依旧使用 V5 架构中的SPPF模块。但是在 PAN-FPN 层面,V8V5 中的上采样阶段中的卷积结构去除了。同时借鉴了 YOLOXDecoupled-Head 结构,分类和回归两个任务的 HEAD 不再共享参数等。

在模型上 V8 和 V5 类似,包括不同大小的模型,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x等:

模型的比较如下:

在这里插入图片描述

更多的介绍可以参考官方的文档:

https://docs.ultralytics.com/de/models/yolov8/

本文借助ultralyticsYOLO V8 迁移训练自定义的目标检测模型,在本次的实验中,主要训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。

本次采用ultralytics 公司发布的 ultralytics 框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics 默认采用的为 PyTorch 框架,因此实验前请安装好 cudatorch 环境,如果没有 GPU 环境,由于YOLO V8 已经足够轻量级,使用CPU 也是可以训练。

安装 ultralytics 库:

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

ultralytics 使用文档:

https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python

测试 YOLO V8 的效果:

测试图片:
在这里插入图片描述

这里使用 yolov8n 模型,如果模型不存在会自动下载

from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt')  # pretrained YOLOv8n modelresults = model.predict('./img/1.png')
# Show results
results[0].show()

在这里插入图片描述

二、数据收集及标注

图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:

在这里插入图片描述

这里可以准备两个目录,data/imagesdata/labels,其中 labels 存放标注后的文件,将收集到的图像放在 images 目录下:

在这里插入图片描述

下面使用 labelimg 工具进行标注,如果没有安装,使用下面命令安装:

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

然后在控制台输入:labelimg 打开可视化工具:

在这里插入图片描述

注意:数据集格式默认是 VOC 格式的,要选择为 YOLO ,我这里的人脸标签为 face ,这个后面需要使用到。

标注完成后,可以在 /data/labels 下看到标注后的文件:

在这里插入图片描述

三、数据拆分

这里拆分为 90% 的训练集,10% 的验证集,拆分脚本如下,

import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()

在这里插入图片描述
可以在 train_data 中看到拆分后的数据集格式:

在这里插入图片描述

四、训练

使用 ultralytics 框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML 配置信息,主要标记数据集的位置。

创建 face.yaml 文件,写入下面内容:


path: D:/pyProject/yolov8/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face

注意分类中的 face 就是上面标注时的标签名。

开始训练:

from ultralytics import YOLO# 加载模型
model = YOLO('yolov8n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=50, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)

运行后可以看到打印的网络结构:

在这里插入图片描述

训练中:

在这里插入图片描述

训练结束后可以在 runs 目录下面看到训练的结果:

在这里插入图片描述

其中 weights 下面的就是训练后保存的模型,这里可以先看下训练时 loss 的变化图:

在这里插入图片描述

五、模型测试

使用 best.pt 模型

from ultralytics import YOLO
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')# 预测
results = model.predict('data/images/8.jpg')# Show results
results[0].show()

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型

一、YOLO V8 YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度…...

快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推

快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推 ①得物 【岗位】技术,设计,供应链,风控,产品,…...

全局UI方法-弹窗二-列表选择弹窗(ActionSheet)

1、描述 定义列表弹窗 2、接口 ActionSheet.show(value:{ title: string | Resource, message: string | Resource, autoCancel?: boolean, confrim?: {value: string | Resource, action: () > void }, cancel?: () > void, alignment?: DialogAlignment, …...

Memcached分布式内存对象数据库

一 Memcached 概念 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态 Web 应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。 二 在架构中的位置 Memcached 处于前端或中间件后…...

华为广告打包报错,问题思考

华为广告打包时报错 fata日志不一样能反映出完整的错误日志信息,仅看fata日志具有误导性,有可能指向错误的方向。 通过看完整的日志可见,错误的原因为 Caused by: java.lang.ClassNotFoundException: com.huawei.hms.ads.base.R$dimenfata日…...

docker-compose mysql

使用docker-compose 部署 MySQL(所有版本通用) 一、拉取MySQL镜像 我这里使用的是MySQL8.0.18,可以自行选择需要的版本。 docker pull mysql:8.0.18二、创建挂载目录 mkdir -p /data/mysql8/log mkdir -p /data/mysql8/data mkdir -p /dat…...

PGAdmin 4:用于管理和维护PostgreSQL数据库的强大工具

PGAdmin 4 是一款用于管理和维护PostgreSQL数据库的强大工具。它提供了丰富的功能,帮助数据库管理员和开发人员轻松管理他们的数据库。 下载地址:https://www.pgadmin.org/download/,如常用windows和rpm版本 本地使用:windows …...

成都市酷客焕学新媒体科技有限公司:实现品牌的更大价值!

成都市酷客焕学新媒体科技有限公司专注于短视频营销,深知短视频在社交媒体中的巨大影响力。该公司巧妙地将品牌信息融入富有创意和趣味性的内容中,使观众在轻松愉悦的氛围中接受并传播这些信息。凭借独特的创意和精准的营销策略,成都市酷客焕…...

探索数据库--------------mysql主从复制和读写分离

目录 前言 为什么要主从复制? 主从复制谁复制谁? 数据放在什么地方? 一、mysql支持的复制类型 1.1STATEMENT:基于语句的复制 1.2ROW:基于行的复制 1.3MIXED:混合类型的复制 二、主从复制的工作过程 三个重…...

【Hello,PyQt】控件拖拽

在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一,它可以提高用户体验,增加操作的直观性。在 PyQt 中,我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…...

荟萃分析R Meta-Analyses 3 Effect Sizes

总结 效应量是荟萃分析的基石。为了进行荟萃分析,我们至少需要估计效应大小及其标准误差。 效应大小的标准误差代表研究对效应估计的精确程度。荟萃分析以更高的精度和更高的权重给出效应量,因为它们可以更好地估计真实效应。 我们可以在荟萃分析中使用…...

常用的8个应用和中间件的Docker运行示例

文章目录 1、Docker Web 管理工具 portainer2、在线代码编辑器 Code Server3、MySQL4、Redis5、Nginx6、PostgreSQL7、媒体管理工具 Dim8、Gitlab 1、Docker Web 管理工具 portainer Portainer 是一个轻量级的管理 UI ,可让你轻松管理不同的 Docker 环境&#xff0…...

UnoCSS实现背景图片样式加载

UnoCSS是一个好东西,可以把任何style样式通过css去描述。但是默认使用的tailwindcss有一个不完美,就是当使用图片时,背景图片无法通过原子化css直接描述。例如有一个背景图片,则必须为该图片单独出一个css样式,然后再加…...

vue前端工程化

前言 本文介绍的是有关于vue方面的前端工程化实践,主要通过实践操作让开发人员更好的理解整个前端工程化的流程。 本文通过开发准备阶段、开发阶段和开发完成三个阶段开介绍vue前端工程化的整体过程。 准备阶段 准备阶段我将其分为:框架选择、规范制…...

面向对象:继承

文章目录 一、什么叫继承?二、单继承三、多继承3.1多继承的各种情况3.1.1一般情况3.1.1特殊情况(菱形继承) 四、菱形继承引发的问题4.1 问题1:数据冗余4.2 问题2:二义性(无法确定到底是访问哪个) 五、虚拟继承解决菱形…...

ES学习日记(一)-------单节点安装启动

基于ES7.4.1编写,其实一开始用的最新的8.1,但是问题太多了!!!!不稳定,降到7.4 下载好的安装包上传到服务器或虚拟机,创建ES目录,命令mkdir -p /路径xxxx 复制安装包到指定路径并解压: tar zxvf elasticsearch-8.1.0-linux-x86_64.tar.gz -C /usr/local/es/ 进入bin目录安装,命…...

【管理咨询宝藏59】某大型汽车物流战略咨询报告

本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏59】某大型汽车物流战略咨询报告 【格式】PDF 【关键词】HR调研、商业分析、管理咨询 【核心观点】 - 重新评估和调整商业模式,开拓…...

ArcGIS Pro横向水平图例

终于知道ArcGIS Pro怎么调横向图例了! 简单的像0一样 旋转,左转右转随便转 然后调整图例项间距就可以了,参数太多就随便试,总有一款适合你! 要调整长度,就调整图例块的大小。完美! 好不容易…...

线程创建的几种方式

1.继承Thread类 class MyThread extends Thread {public void run() {// 线程执行的任务for (int i 0; i < 5; i) {System.out.println("Thread: " i);try {Thread.sleep(1000); // 使线程休眠 1 秒} catch (InterruptedException e) {e.printStackTrace();}}}…...

Python教程:一文掌握Python多线程(很详细)

目录 1.什么是多线程&#xff1f; 1.1多线程与单线程的区别 1.2 Python 中的多线程实现方式 2.使用 threading 模块创建和管理线程 2.1创建线程&#xff1a;Thread 类的基本用法 2.2线程的启动和执行&#xff1a;start() 方法 2.3线程的同步和阻塞&#xff1a;join() 方…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...