基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V8
YOLO V8
是由 2023
年 ultralytics
公司开源的发布,是结合了前几代 YOLO
的融合改进版。YOLO V8
支持全方位的视觉 AI
任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度要求较高的应用和领域。
网络结构如下图所示:
YOLO V8
相对于 YOLO V5
还是有很大的不同,例如:YOLO V8
相对于 YOLO V5
,依然使用的是CSP
的思想,不过将 V5
中的C3
模块换成了C2F
模块,以减轻模型的大小,也依旧使用 V5
架构中的SPPF
模块。但是在 PAN-FPN
层面,V8
将 V5
中的上采样阶段中的卷积结构去除了。同时借鉴了 YOLOX
的 Decoupled-Head
结构,分类和回归两个任务的 HEAD
不再共享参数等。
在模型上 V8 和 V5 类似,包括不同大小的模型,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x
等:
模型的比较如下:
更多的介绍可以参考官方的文档:
https://docs.ultralytics.com/de/models/yolov8/
本文借助ultralytics
中 YOLO V8
迁移训练自定义的目标检测模型,在本次的实验中,主要训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。
本次采用ultralytics
公司发布的 ultralytics
框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics
默认采用的为 PyTorch
框架,因此实验前请安装好 cuda
和 torch
环境,如果没有 GPU
环境,由于YOLO V8
已经足够轻量级,使用CPU
也是可以训练。
安装 ultralytics
库:
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
ultralytics
使用文档:
https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python
测试 YOLO V8
的效果:
测试图片:
这里使用 yolov8n
模型,如果模型不存在会自动下载
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # pretrained YOLOv8n modelresults = model.predict('./img/1.png')
# Show results
results[0].show()
二、数据收集及标注
图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:
这里可以准备两个目录,data/images
和 data/labels
,其中 labels
存放标注后的文件,将收集到的图像放在 images
目录下:
下面使用 labelimg
工具进行标注,如果没有安装,使用下面命令安装:
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在控制台输入:labelimg
打开可视化工具:
注意:数据集格式默认是 VOC
格式的,要选择为 YOLO
,我这里的人脸标签为 face
,这个后面需要使用到。
标注完成后,可以在 /data/labels
下看到标注后的文件:
三、数据拆分
这里拆分为 90%
的训练集,10%
的验证集,拆分脚本如下,
import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()
可以在 train_data
中看到拆分后的数据集格式:
四、训练
使用 ultralytics 框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML
配置信息,主要标记数据集的位置。
创建 face.yaml
文件,写入下面内容:
path: D:/pyProject/yolov8/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face
注意分类中的 face
就是上面标注时的标签名。
开始训练:
from ultralytics import YOLO# 加载模型
model = YOLO('yolov8n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=50, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)
运行后可以看到打印的网络结构:
训练中:
训练结束后可以在 runs
目录下面看到训练的结果:
其中 weights
下面的就是训练后保存的模型,这里可以先看下训练时 loss
的变化图:
五、模型测试
使用 best.pt
模型
from ultralytics import YOLO
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')# 预测
results = model.predict('data/images/8.jpg')# Show results
results[0].show()
相关文章:

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V8 YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度…...
快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推
快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推 ①得物 【岗位】技术,设计,供应链,风控,产品,…...

全局UI方法-弹窗二-列表选择弹窗(ActionSheet)
1、描述 定义列表弹窗 2、接口 ActionSheet.show(value:{ title: string | Resource, message: string | Resource, autoCancel?: boolean, confrim?: {value: string | Resource, action: () > void }, cancel?: () > void, alignment?: DialogAlignment, …...

Memcached分布式内存对象数据库
一 Memcached 概念 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态 Web 应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。 二 在架构中的位置 Memcached 处于前端或中间件后…...

华为广告打包报错,问题思考
华为广告打包时报错 fata日志不一样能反映出完整的错误日志信息,仅看fata日志具有误导性,有可能指向错误的方向。 通过看完整的日志可见,错误的原因为 Caused by: java.lang.ClassNotFoundException: com.huawei.hms.ads.base.R$dimenfata日…...

docker-compose mysql
使用docker-compose 部署 MySQL(所有版本通用) 一、拉取MySQL镜像 我这里使用的是MySQL8.0.18,可以自行选择需要的版本。 docker pull mysql:8.0.18二、创建挂载目录 mkdir -p /data/mysql8/log mkdir -p /data/mysql8/data mkdir -p /dat…...

PGAdmin 4:用于管理和维护PostgreSQL数据库的强大工具
PGAdmin 4 是一款用于管理和维护PostgreSQL数据库的强大工具。它提供了丰富的功能,帮助数据库管理员和开发人员轻松管理他们的数据库。 下载地址:https://www.pgadmin.org/download/,如常用windows和rpm版本 本地使用:windows …...

成都市酷客焕学新媒体科技有限公司:实现品牌的更大价值!
成都市酷客焕学新媒体科技有限公司专注于短视频营销,深知短视频在社交媒体中的巨大影响力。该公司巧妙地将品牌信息融入富有创意和趣味性的内容中,使观众在轻松愉悦的氛围中接受并传播这些信息。凭借独特的创意和精准的营销策略,成都市酷客焕…...

探索数据库--------------mysql主从复制和读写分离
目录 前言 为什么要主从复制? 主从复制谁复制谁? 数据放在什么地方? 一、mysql支持的复制类型 1.1STATEMENT:基于语句的复制 1.2ROW:基于行的复制 1.3MIXED:混合类型的复制 二、主从复制的工作过程 三个重…...

【Hello,PyQt】控件拖拽
在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一,它可以提高用户体验,增加操作的直观性。在 PyQt 中,我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…...

荟萃分析R Meta-Analyses 3 Effect Sizes
总结 效应量是荟萃分析的基石。为了进行荟萃分析,我们至少需要估计效应大小及其标准误差。 效应大小的标准误差代表研究对效应估计的精确程度。荟萃分析以更高的精度和更高的权重给出效应量,因为它们可以更好地估计真实效应。 我们可以在荟萃分析中使用…...

常用的8个应用和中间件的Docker运行示例
文章目录 1、Docker Web 管理工具 portainer2、在线代码编辑器 Code Server3、MySQL4、Redis5、Nginx6、PostgreSQL7、媒体管理工具 Dim8、Gitlab 1、Docker Web 管理工具 portainer Portainer 是一个轻量级的管理 UI ,可让你轻松管理不同的 Docker 环境࿰…...
UnoCSS实现背景图片样式加载
UnoCSS是一个好东西,可以把任何style样式通过css去描述。但是默认使用的tailwindcss有一个不完美,就是当使用图片时,背景图片无法通过原子化css直接描述。例如有一个背景图片,则必须为该图片单独出一个css样式,然后再加…...

vue前端工程化
前言 本文介绍的是有关于vue方面的前端工程化实践,主要通过实践操作让开发人员更好的理解整个前端工程化的流程。 本文通过开发准备阶段、开发阶段和开发完成三个阶段开介绍vue前端工程化的整体过程。 准备阶段 准备阶段我将其分为:框架选择、规范制…...

面向对象:继承
文章目录 一、什么叫继承?二、单继承三、多继承3.1多继承的各种情况3.1.1一般情况3.1.1特殊情况(菱形继承) 四、菱形继承引发的问题4.1 问题1:数据冗余4.2 问题2:二义性(无法确定到底是访问哪个) 五、虚拟继承解决菱形…...

ES学习日记(一)-------单节点安装启动
基于ES7.4.1编写,其实一开始用的最新的8.1,但是问题太多了!!!!不稳定,降到7.4 下载好的安装包上传到服务器或虚拟机,创建ES目录,命令mkdir -p /路径xxxx 复制安装包到指定路径并解压: tar zxvf elasticsearch-8.1.0-linux-x86_64.tar.gz -C /usr/local/es/ 进入bin目录安装,命…...

【管理咨询宝藏59】某大型汽车物流战略咨询报告
本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏59】某大型汽车物流战略咨询报告 【格式】PDF 【关键词】HR调研、商业分析、管理咨询 【核心观点】 - 重新评估和调整商业模式,开拓…...

ArcGIS Pro横向水平图例
终于知道ArcGIS Pro怎么调横向图例了! 简单的像0一样 旋转,左转右转随便转 然后调整图例项间距就可以了,参数太多就随便试,总有一款适合你! 要调整长度,就调整图例块的大小。完美! 好不容易…...
线程创建的几种方式
1.继承Thread类 class MyThread extends Thread {public void run() {// 线程执行的任务for (int i 0; i < 5; i) {System.out.println("Thread: " i);try {Thread.sleep(1000); // 使线程休眠 1 秒} catch (InterruptedException e) {e.printStackTrace();}}}…...
Python教程:一文掌握Python多线程(很详细)
目录 1.什么是多线程? 1.1多线程与单线程的区别 1.2 Python 中的多线程实现方式 2.使用 threading 模块创建和管理线程 2.1创建线程:Thread 类的基本用法 2.2线程的启动和执行:start() 方法 2.3线程的同步和阻塞:join() 方…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...