pnpm、monorepo分包管理、多包管理、npm、vite、前端工程化、保姆级教程
浅尝pnpm monorepo 多包管理方案
💡tips: 创建pnpm monorope多包管理框架流程
初始化
mkdir taurus & cd taurus
pnpm init
创建基础文件
- 创建文件pnpm-workspace.yaml
packages:- 'packages/**'
- 创建文件夹packages/
-packages/
-package.json
-pnpm-workspace.yaml
创建子项目
- 创建子项目@taurus/three
tips:创建项目时将项目名称设置为目标名称(@taurus/name 方便区分共有包和自定义包,不做强制要求),可查看 packages.json 中的name字段进行验证
cd packages
pnpm create vite three --template vue
- 创建子项目@taurus/utils
cd packages
mkdir utils & cd utils
npm init
- 添加子项目引用
pnpm add @tautus/utils --filter @taurus/three -wP
添加成功后验证方法
@taurus/three-ts配置引用目录别名 @
-
在vite.config.ts中添加 alias
import { defineConfig } from "vite"; import vue from "@vitejs/plugin-vue"; import path from 'path'; // https://vitejs.dev/config/ export default defineConfig({plugins: [vue()],resolve:{alias:{"@":path.resolve(__dirname,"src"),'components': path.resolve(__dirname, './src/components'), // 设置 'components' 指向 src/components 目录}} });
-
解决使用nodeAPI时ts报错问题,下载node类型函数
pnpm add @types/node -wD
-
解决文件中使用@引用是的ts报错,在tsconfig.json中设置@别名
{"compilerOptions":{"baseUrl": ".", // 这个选项中指定了相对于哪个目录解析别名"paths":{"@/*": ["src/*"] // 这里设置别名@指向src目录下的文件}} }
支持less
pnpm add less less-loader --filter @taurus/three-ts -w
配置vite.config.ts
{...css:{preprocessorOptions: {less: {math: "always", // 括号内才使用数学计算globalVars: {// 全局变量mainColor: "red",},},},}
}
组件中使用
<style lang="less" scoped>.classA{.p1{color:red;}}
</style>
接下来开始编写你颠覆时代的代码吧
欢迎各位猿佬留言交流
相关文章:

pnpm、monorepo分包管理、多包管理、npm、vite、前端工程化、保姆级教程
浅尝pnpm monorepo 多包管理方案 💡tips: 创建pnpm monorope多包管理框架流程 初始化 mkdir taurus & cd taurus pnpm init创建基础文件 创建文件pnpm-workspace.yaml packages:- packages/**创建文件夹packages/ -packages/ -package.json -pnpm-workspace…...

vue3封装Element分页
配置当前页 配置每页条数 页面改变、每页条数改变都触发回调 封装分页 Pagination.vue <template><el-paginationbackgroundv-bind"$attrs":page-sizes"pageSizes"v-model:current-page"page"v-model:page-size"pageSize":t…...

真机 ARM64 架构转模拟器 ARM64 架构
本文字数:2051字 预计阅读时间:15分钟 01 需要转换架构的原因 老版 Mac 使用 Intel 芯片,是x86_64架构,相应地在老版 Mac 上运行的模拟器使用的也就是 x86_64架构。 由于模拟器的 x86_64 架构与真机的 arm64、armv7 等架构不冲突&…...

敏捷教练CSM认证考了有没有用,谁说了算?
敏捷教练CSM证书是近年来备受关注的一项证书,它被认为可以提升敏捷开发团队的管理能力和项目执行效率。然而,对于这个证书的价值和含金量,人们的观点却不尽相同。那么,CSM证书到底有没有用,谁来说了算呢? 首…...

Docker-Container
Docker ①什么是容器②为什么需要容器③容器的生命周期容器 OOM容器异常退出容器暂停 ④容器命令清单总览docker createdocker rundocker psdocker logsdocker attachdocker execdocker startdocker stopdocker restartdocker killdocker topdocker statsdocker container insp…...

下载安装anaconda和pytorch的详细方法,以及遇到的问题和解决办法
下载安装Anaconda 首先需要下载Anaconda,可以到官网Anaconda官网或者这里提供一个镜像网站去下载anaconda镜像网站 安装步骤可参考该文章:Anaconda安装步骤,本篇不再赘述 注意环境变量的配置,安装好Anaconda之后一定要在环境变量…...

2020年天津市二级分类土地利用数据(矢量)
天津市,位于华北平原海河五大支流汇流处,东临渤海,北依燕山。地势以平原和洼地为主,北部有低山丘陵,海拔由北向南逐渐下降,地貌总轮廓为西北高而东南低。天津有山地、丘陵和平原三种地形,平原约…...

设计模式——结构型——外观模式Facade
处理器类 public class Cpu {public void start() {System.out.println("处理器启动了...");} } 内存类 public class Memory {public void start() {System.out.println("内存启动了...");} } 硬盘类 public class Disk {public void start() {Syste…...

OpenGL的MVP矩阵理解
OpenGL的MVP矩阵理解 右手坐标系 右手坐标系与左手坐标系都是三维笛卡尔坐标系,他们唯一的不同在于z轴的方向,如下图,左边是左手坐标系,右边是右手坐标系 OpenGL中一般用的是右手坐标系 1.模型坐标系(Local Space&…...

前端超分辨率技术应用:图像质量提升与场景实践探索-设计篇
超分辨率! 引言 在数字化时代,图像质量对于用户体验的重要性不言而喻。随着显示技术的飞速发展,尤其是移动终端视网膜屏幕的广泛应用,用户对高分辨率、高质量图像的需求日益增长。然而,受限于网络流量、存储空间和图像…...

C++11入门手册第一节,学完直接上手Qt(共两节)
入门 hello.cpp #include <iostream>int main() { std::cout << "Hello Quick Reference\n"<<endl; return 0;} 编译运行 $ g hello.cpp -o hello$ ./helloHello Quick Reference 变量 int number 5; // 整数float f 0.95; //…...

Docker部署MinIO对象存储服务
1. 拉取MinIO镜像 # 下载镜像 docker pull minio/minio#查看镜像 docker images2. 创建目录 # 文件存储目录 mkdir -p /opt/minio/data# 配置文件 mkdir -p /opt/minio/config# 日志文件 mkdir -p /opt/minio/logs3. 创建Minio容器并运行 docker run \ -p 9000:9000 \ -p 90…...

基于Echarts的超市销售可视化分析系统(数据+程序+论文)
本论文旨在研究Python技术和ECharts可视化技术在超市销售数据分析系统中的应用。本系统通过对超市销售数据进行分析和可视化展示,帮助决策层更好地了解销售情况和趋势,进而做出更有针对性的决策。本系统主要包括数据处理、数据可视化和系统测试三个模块。…...

使用ai智能写作场景之gpt整理资料,如何ai智能写作整理资料
Ai智能写作助手:Ai智能整理资料小助手 Ai智能整理资料小助手可试用3天! 通俗的解释一下怎么用ChatGPT来进行资料整理: 搜寻并获取指定数量的特定领域文章: 想像你在和我说话一样,告诉我你想要多少篇关于某个话题的文…...

C/C++ 内存管理
1、C/C内存分布 首先我们来了解在一个程序中,代码主要存储在哪些地方; 1.栈:又叫堆栈,其中一般存储非静态局部变量、函数参数、返回值等,栈的增长是向下的。 2.内存映射段:是高效的 I/O 映射方式࿰…...
android pdf框架-10,相册浏览
MupdfViewer 这是最后apk,源码在前面的文章已经贴过了本站下载地址,只是不是最新的.可能不少是旧的内容. subsampling-scale-image-view这是一个大图片的分块加载的实现.比较不错的.滑动方面我觉得使用flinger的效果比它要流畅,惯性要好. 也有人把这个作成pdf渲染器.但翻页就…...

基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。
演示视频: 基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…...

数据结构刷题篇 之 【力扣二叉树基础OJ】详细讲解(含每道题链接及递归图解)
有没有一起拼用银行卡的,取钱的时候我用,存钱的时候你用 1、相同的树 难度等级:⭐ 直达链接:相同的树 2、单值二叉树 难度等级:⭐ 直达链接:单值二叉树 3、对称二叉树 难度等级:⭐⭐ 直达…...

Jackson 2.x 系列【6】注解大全篇二
有道无术,术尚可求,有术无道,止于术。 本系列Jackson 版本 2.17.0 源码地址:https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 注解大全2.11 JsonValue2.12 JsonKey2.13 JsonAnySetter2.14 JsonAnyGetter2.15 …...

在低成本loT mcu上实现深度神经网络端到端自动部署-深度神经网络、物联网、边缘计算、DNN加速——文末完整资料
目录 前言 DNN 量化神经网络 并行超低功耗计算范式 面向内存的部署 结果 原文与源码下载链接 REFERENCES 前言 在物联网极端边缘的终端节点上部署深度神经网络( Deep Neural Networks,DNNs )是支持普适深度学习增强应用的关键手段。基于低成本MCU的终端节点…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...