当前位置: 首页 > news >正文

2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

B题 位图的处理算法

原题再现:

  图形(或图像)在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。矢量图可以任意放缩,图形不会有任何改变。而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。
  第一阶段问题: 矢量图从本质上只是使用曲线方程对图形进行的精确描述,在以像素为基本显示单元的显示器或打印机上是无法直接表现的。将矢量图转换成以像素点阵来表示的信息,再加以显示或打印,这个过程称之为栅格化(Rasterization),见图 1。
  栅格化的逆过程相对比较困难。假设有一个形状较为简单的图标,保存成一定分辨率的位图文件。我们希望将其矢量化,请你建立合理的数学模型,尽量准确地提取出图案的边界线条,并将其用方程表示出来。
在这里插入图片描述

整体求解过程概述(摘要)

  本次的问题是让我们处理栅格化逆过程,即根据位图图像像素点阵,得到矢量图形的几何特征,矢量图形本质上是使用曲线方程对图像进行精确描述,利用计算机辅助我们提取位图像素点阵特征,根据具体的拟合算法输出矢量图形。
  首先,我们仔细分析图形信息,对图像进行了灰度处理,即对图像去彩色化。通过观察图像的灰度直方图,我们发现灰度直方图有双峰特性,采用 ostu 算法对图像进行了分割以及区域二值化,我们尝试了多种边缘检测算子,通过画图比较决定使用ostu+canny算子的方式进行边缘提取。从而得到边缘数据点。
  然后,观察边缘数据点的分布情况,我们发现其在电脑内的存储状态没有构成点序列,出于对后面数据操作的便利,我们采用了 freeman 码的方式,对边界数据进行边缘跟踪,产生数据有序化,并在此过程中找出边界数据的突变点(尖点),为下一步的轮廓曲线拟合做准备。
  接着,我们对有序化的边界数据进行了两种方式的拟合。第一种是采用抛物线样条曲线拟合,在之前的步骤中,我们得到了图形边界的尖点信息,由于整个图形是封闭的,我们以这些尖点作为分段点,在分段点区间内进行抛物线样条拟合,拟合标准便是所有点的偏差最小。从而得到边界轮廓方程。采取的第二种方法是针对于题目所给图像的特征,我们采取了分段函数拟合的办法,第一部分采用椭圆拟合的方式;第二部分是图形下部尖端部分,我们采用多项式拟合方式,最终得到边界图与边界方程。第一种方法具有一定的普适性,可以应用于任意形状的图形的拟合,拟合效果较为理想;第二种方法具有特殊性,针对有特定图像的拟合效果相对更好。
  随后,在得到边界拟合曲线的基础上,我们综合比较了现在较为主流的种子填充算法和扫描线填充算法,并根据此次问题实际情况,提出了改进版本的扫描线填充算法,在进行边界内部填充的过程中,我们针对难填充的区域进行了区域划分,使得每一个区域都能够完美填充。
  最后,我们考虑到图形程序较为复杂,与人的交互性较差,我们采用了简单的 matlab gui 界面方式对部分程序结果进行了统一展示,提高了程序的可视化以及人机交互性。

问题分析:

  这次的问题是栅格化的逆过程,也即是从位图到矢量化图形的过程。由于位图计算机存储的是每个像素点的信息,而矢量图形计算机存储的是其几何特征。所以在栅格化逆过程中我们必须要考虑位图图像的几何特征,并想办法提取这些几何特征。对于一个封闭图形,我们如果能够知道图形的边界方程、线条的粗细以及颜色,那么我们最后的工作就是展现这些特征所标识的矢量图形。
  图形的边界方程的获取一般会涉及边界区域的确定,进而得到边界数据点,并将数据点有序化。一般对于边界的拟合有多边形近似、样条插值拟合和分段函数拟合,而大部分拟合方法要求数据的有序化。
  线条的粗细可以根据边界提取后的边界数据来确定,而颜色可以通过对于位图像素点的提取来确定。

模型假设:

  假设 1:照片像素在 MATLAB 的处理范围内。
  假设 2:填充的图形是封闭的,如果边缘本身有断点,用函数 bwfill 进行“补洞”操作;
  假设 3:对于图片的比较微细小的部分,用膨胀函数 dilate 进行原图膨胀。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function cl=clusterp(pic)
a=pic;
count=imhist(a);
[m,n]=size(a);
N=m*n;
L=256;
count=count/N;
for i=1:L
if count (i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count (i)~=0
nd=i-1;
break;
end
end
F=count(st+1:nd+1); 
p=st; 
q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); 
ua(i)=u;
end;
for i=1:q
w(i)=sum(f(1:i)); 
end;
d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); 
th=tp+p;
for i=1:m
for j=1:n
if a(i,j)<th
a(i,j)=0;
else
a(i,j)=255;
end
end
end
imshow(a);
clear all
clc
F=imread('C:\Users\pc\Desktop\gui\图片1.png');
F1=rgb2gray(F);
F2=im2bw(F1);
m1=edge(F2,'canny');
m2=edge(F2,'sobel');
m3=edge(F2,'roberts');
m4=edge(F2,'log');
m5=bwperim(F2,4);
F=rgb2gray(F);
m6=F;
count=imhist(m6);
[m,n]=size(m6);
N=m*n;
L=256;
count=count/N;
for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count(i)~=0
nd=i-1;
break;
end
end
f=count(st+1:nd+1); 
p=st; 
q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); 
ua(i)=u;
end;
for i=1:q
w(i)=sum(f(1:i)); 
end;
d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); 
th=tp+p;
for i=1:m
for j=1:n
if m6(i,j)<th
m6(i,j)=0;
else
m6(i,j)=255;
end
end
end
subplot(2,2,2);
imshow(m6);
subplot(2,2,3);m6=edge(m6,'canny');
imshow(m6);
m11=imcomplement(m1);
m21=imcomplement(m2);
m31=imcomplement(m3);
m41=imcomplement(m4);
m51=imcomplement(m5);
[L,W]=size(m51);
m51(:,1)=1;m51(:,W)=1;m51(1,:)=1;m51(L,:)=1;
m61=imcomplement(m6);
subplot(2,3,1),imshow(m11),title('canny算子')
subplot(2,3,2),imshow(m21),title('sobel算子')
subplot(2,3,3),imshow(m31),title('roberts算子')
subplot(2,3,4),imshow(m41),title('log算子')
subplot(2,3,5),imshow(m51),title('bwperim')
subplot(2,3,6),imshow(m61),title('ostu+canny算子')
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序

2014年认证杯SPSSPRO杯数学建模 B题 位图的处理算法 原题再现&#xff1a; 图形&#xff08;或图像&#xff09;在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形&#xff0c;位图则使用像素来描述图像。一般来说&#…...

【物联网项目】基于ESP8266的家庭灯光与火情智能监测系统——文末完整工程资料源码

目录 系统介绍 硬件配置 硬件连接图 系统分析与总体设计 系统硬件设计 ESP8266 WIFI开发板 人体红外传感器模块 光敏电阻传感器模块 火焰传感器模块 可燃气体传感器模块 温湿度传感器模块 OLED显示屏模块 系统软件设计 温湿度检测模块 报警模块 OLED显示模块 …...

Unity中控制帧率的思考

如何控制帧率&#xff1a; 在Unity中&#xff0c;你可以通过设置Application.targetFrameRate来限制帧率。 例如&#xff0c;如果你想将帧率限制为16帧&#xff0c; 你可以在你的代码中添加以下行&#xff1a; Application.targetFrameRate 16; 通常&#xff0c;这行代码会放在…...

阿里云子域名配置,且不带端口访问

进入阿里云控制台&#xff0c;创建一个SSL证书 # 域名名称child.domain.com创建完成后&#xff0c;将返回主机记录以及记录值&#xff0c;保存好&#xff0c;用于下一步使用 创建DNS解析 创建DNS的TXT类型解析 选择记录类型&#xff1a;TXT 填写主机记录&#xff1a;_dnsa…...

C#-ConcurrentDictionary用于多线程并发字典

ConcurrentDictionary 是 .NET Framework 中用于多线程并发操作的一种线程安全的字典集合类。它提供了一种在多个线程同时访问和修改字典时保持数据一致性的机制。 以下是 ConcurrentDictionary 类的一些重要特性和用法&#xff1a; 线程安全性&#xff1a;ConcurrentDictiona…...

深入探讨多线程编程:从0-1为您解释多线程(下)

文章目录 6. 死锁6.1 死锁原因 6.2 避免死锁的方法加锁顺序一致性。超时机制。死锁检测和解除机制。 6. 死锁 6.1 死锁 原因 系统资源的竞争&#xff1a;&#xff08;产生环路&#xff09;当系统中供多个进程共享的资源数量不足以满足进程的需要时&#xff0c;会引起进程对2…...

深度学习pytorch——减少过拟合的几种方法(持续更新)

1、增加数据集 2、正则化(Regularization) 正则化&#xff1a;得到一个更加简单的模型的方法。 以一个多项式为例&#xff1a; 随着最高次的增加&#xff0c;会得到一个更加复杂模型&#xff0c;模型越复杂就会更好的拟合输入数据的模型&#xff08;图-1&#xff09;&#…...

排序第五篇 归并排序

一 简介 归并排序(Merge Sort) 的基本思想是&#xff1a; 首先将待排序文件看成 n n n 个长度为1的有序子文件&#xff0c; 把这些子文件两两归并&#xff0c; 得到 n 2 \frac{n}{2} 2n​ 个长度为 2 的有序子文件&#xff1b; 然后再把这 n 2 \frac{n}{2} 2n​ 个有序的子…...

【Win】使用PowerShell和Webhooks轻松发送消息至Microsoft Teams

Microsoft Teams是一款由微软开发的团队协作和通讯工具。如果您对这个名字还不太熟悉&#xff0c;那么现在就是一个了解它的好时机。微软将Teams定位为其之前Skype for Business解决方案的继任者&#xff0c;并且它也提供了与其他基于频道的通讯应用程序&#xff08;例如Slack、…...

ESCTF-OSINT赛题WP

这你做不出来?check ESCTF{湖北大学_嘉会园食堂} 这个识图可以发现是 淡水渔人码头 但是 osint 你要发现所有信息 聊天记录说国外 同时 提示给了美国 你综合搜索 美国 渔人码头 在美国旧金山的渔人码头&#xff08;英语&#xff1a;Fisherman’s Wharf&#xff09;是一个著名旅…...

2024蓝桥杯省赛保奖突击班-Day2-前缀和、差分、尺取_笔记_练习题解

3月25日-课堂笔记 前缀和预处理 O ( n ) \mathcal{O}(n) O(n) s[1] a[1]; for(int i 2; i < n; i)s[i] s[i - 1] a[i];利用前缀和查询区间和 O ( 1 ) O(1) O(1) long long calc(int l, int r) {return l 1 ? s[r] : s[r] - s[l - 1]; }差分序列的求法 c[1] a[…...

C++基础之虚函数(十七)

一.什么是多态 多态是在有继承关系的类中&#xff0c;调用同一个指令&#xff08;函数&#xff09;&#xff0c;不同对象会有不同行为。 二.什么是虚函数 概念&#xff1a;首先虚函数是存在于类的成员函数中&#xff0c;通过virtual关键字修饰的成员函数叫虚函数。 性质&am…...

快速入门Kotlin①基本语法

前言 23年底读了一遍“Kotlin官方文档”&#xff0c;官方文档大而全&#xff0c;阅读下来&#xff0c;大有裨益。 此系列文章的目的是记录学习进程&#xff0c;同时&#xff0c;若能让读者迅速掌握重点内容并快速上手&#xff0c;那就再好不过了。 函数 带有两个 Int 参数、…...

【理解指针(四)】

文章目录 一、指针数组二、指针数组来模拟二维数组三、字符指针变量注意&#xff1a; 字符串的例子&#xff08;曾经的一道笔试题&#xff09; 四、数组指针变量1、什么是数组指针变量2、数组指针怎么初始化 五、二维数组传参的本质六、函数指针1、什么是函数指针变量2、函数的…...

Ribbon简介

目录 一 、概念介绍 1、Ribbon是什么 2、认识负载均衡 2.1 服务器端的负载均衡 2.2 客户端的负载均衡 3、Ribbon工作原理 4、Ribbon的主要组件 IClientConfig ServerList ServerListFilter IRule Iping ILoadBalancer ServerListUpdater 5、Ribbon支持…...

【感悟《剑指offer》典型编程题的极练之路】02字符串篇!

​ 个人主页&#xff1a;秋风起&#xff0c;再归来~ 文章所属专栏&#xff1a;《剑指offer》典型编程题的极练之路 ​​​​​​ 个人格言&#xff1a;悟已往之不谏&#xff0c;知来者犹可追 克心守己&#xff0c…...

通过 Docker 实现国产数据库 OpenGauss 开发环境搭建

通过 Docker 实现国产数据库 OpenGauss 开发环境搭建 一 前置准备 2.1 下载镜像 docker pull enmotech/opengauss:5.0.1构建镜像的 Dockerfile&#xff0c;方便后期实现个性化定制&#xff1a; FROM ubuntu:22.04 as builderARG TARGETARCHWORKDIR /warehouseRUN set -eux;…...

【Java】LinkedList模拟实现

目录 整体框架IMyLinkedList接口IndexNotLegalException异常类MyLinkedList类成员变量(节点信息)addFirst(头插)addLast(尾插)在指定位置插入数据判断是否存在移除第一个相等的节点移除所有相等的节点链表的长度打印链表释放回收链表 整体框架 IMyLinkedList接口 这个接口用来…...

ubuntu下mysql常用命令

1. 登录数据库 mysql -u root -p 2.创建数据库 create database 数据库名字 mysql> create database yourdb; Query OK, 1 row affected (0.03 sec)3.显示数据库 show databases; 实操结果如下 mysql> show databases; -------------------- | Database | ---…...

燃气官网安全运行监测系统-阀井燃气监测仪-旭华智能

近年来&#xff0c;燃气爆炸事故频发&#xff0c;造成了重大人员伤亡和财产损失。这也再次为我们敲响警钟&#xff0c;燃气是我们日常生活中不可或缺的能源&#xff0c;但其潜在的危险性也是不容小觑。因此在重要节点加装燃气阀井气体监测仪&#xff0c;并将数据上传到系统平台…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix&#xff0c;按照"之"字形的方式打印这个矩阵&#xff0c;例如&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为&#xff1a;1&#xff0c;…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...