pytorch中的torch.nn.Linear
torch.nn.Linear是pytorch中的线性层,应该是最常见的网络层了,官方文档:torch.nn.Linear。
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
其中,in_features表示输入的维度;out_features表示输出的维度;bias表示是否包含偏置,默认为True。
nn.linear的作用其实就是对输入进行了一个线性变换,中学时我们学习的线性变换是y=kx+b,但是对于神经网络来说,我们的输入、输出和权重都是一个矩阵,即: o u t p u t = i n p u t ∗ W + b output=input*W+b output=input∗W+b 其中, i n p u t ∈ R n × i input\in R^{n×i} input∈Rn×i, W ∈ R i × o W\in R^{i×o} W∈Ri×o, o u t p u t ∈ R n × o output\in R^{n×o} output∈Rn×o,n为输入向量的行数(通常为batch数),i为输入神经元的个数,o为输出神经元的个数。使用举例:
FC = nn.Linear(20, 40)
input = torch.randn(128, 20) # (128,20)
output = FC(input)
print(output.size()) # (128,40)
官方源码:
import mathimport torch
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from .. import functional as F
from .. import init
from .module import Module
from .lazy import LazyModuleMixinclass Identity(Module):r"""A placeholder identity operator that is argument-insensitive.Args:args: any argument (unused)kwargs: any keyword argument (unused)Shape:- Input: :math:`(*)`, where :math:`*` means any number of dimensions.- Output: :math:`(*)`, same shape as the input.Examples::>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 20])"""def __init__(self, *args, **kwargs):super(Identity, self).__init__()def forward(self, input: Tensor) -> Tensor:return inputclass Linear(Module):r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`This module supports :ref:`TensorFloat32<tf32_on_ampere>`.Args:in_features: size of each input sampleout_features: size of each output samplebias: If set to ``False``, the layer will not learn an additive bias.Default: ``True``Shape:- Input: :math:`(*, H_{in})` where :math:`*` means any number ofdimensions including none and :math:`H_{in} = \text{in\_features}`.- Output: :math:`(*, H_{out})` where all but the last dimensionare the same shape as the input and :math:`H_{out} = \text{out\_features}`.Attributes:weight: the learnable weights of the module of shape:math:`(\text{out\_features}, \text{in\_features})`. The values areinitialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in\_features}}`bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.If :attr:`bias` is ``True``, the values are initialized from:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where:math:`k = \frac{1}{\text{in\_features}}`Examples::>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 30])"""__constants__ = ['in_features', 'out_features']in_features: intout_features: intweight: Tensordef __init__(self, in_features: int, out_features: int, bias: bool = True,device=None, dtype=None) -> None:factory_kwargs = {'device': device, 'dtype': dtype}super(Linear, self).__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))if bias:self.bias = Parameter(torch.empty(out_features, **factory_kwargs))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self) -> None:# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see# https://github.com/pytorch/pytorch/issues/57109init.kaiming_uniform_(self.weight, a=math.sqrt(5))if self.bias is not None:fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0init.uniform_(self.bias, -bound, bound)def forward(self, input: Tensor) -> Tensor:return F.linear(input, self.weight, self.bias)def extra_repr(self) -> str:return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias is not None)# This class exists solely to avoid triggering an obscure error when scripting
# an improperly quantized attention layer. See this issue for details:
# https://github.com/pytorch/pytorch/issues/58969
# TODO: fail fast on quantization API usage error, then remove this class
# and replace uses of it with plain Linear
class NonDynamicallyQuantizableLinear(Linear):def __init__(self, in_features: int, out_features: int, bias: bool = True,device=None, dtype=None) -> None:super().__init__(in_features, out_features, bias=bias,device=device, dtype=dtype)[docs]class Bilinear(Module):r"""Applies a bilinear transformation to the incoming data::math:`y = x_1^T A x_2 + b`Args:in1_features: size of each first input samplein2_features: size of each second input sampleout_features: size of each output samplebias: If set to False, the layer will not learn an additive bias.Default: ``True``Shape:- Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and:math:`*` means any number of additional dimensions including none. All but the last dimensionof the inputs should be the same.- Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.- Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}`and all but the last dimension are the same shape as the input.Attributes:weight: the learnable weights of the module of shape:math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in1\_features}}`bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.If :attr:`bias` is ``True``, the values are initialized from:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in1\_features}}`Examples::>>> m = nn.Bilinear(20, 30, 40)>>> input1 = torch.randn(128, 20)>>> input2 = torch.randn(128, 30)>>> output = m(input1, input2)>>> print(output.size())torch.Size([128, 40])"""__constants__ = ['in1_features', 'in2_features', 'out_features']in1_features: intin2_features: intout_features: intweight: Tensordef __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True,device=None, dtype=None) -> None:factory_kwargs = {'device': device, 'dtype': dtype}super(Bilinear, self).__init__()self.in1_features = in1_featuresself.in2_features = in2_featuresself.out_features = out_featuresself.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs))if bias:self.bias = Parameter(torch.empty(out_features, **factory_kwargs))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self) -> None:bound = 1 / math.sqrt(self.weight.size(1))init.uniform_(self.weight, -bound, bound)if self.bias is not None:init.uniform_(self.bias, -bound, bound)def forward(self, input1: Tensor, input2: Tensor) -> Tensor:return F.bilinear(input1, input2, self.weight, self.bias)def extra_repr(self) -> str:return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(self.in1_features, self.in2_features, self.out_features, self.bias is not None)class LazyLinear(LazyModuleMixin, Linear):r"""A :class:`torch.nn.Linear` module where `in_features` is inferred.In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`class. They will be initialized after the first call to ``forward`` is done and themodule will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argumentof the :class:`Linear` is inferred from the ``input.shape[-1]``.Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentationon lazy modules and their limitations.Args:out_features: size of each output samplebias: If set to ``False``, the layer will not learn an additive bias.Default: ``True``Attributes:weight: the learnable weights of the module of shape:math:`(\text{out\_features}, \text{in\_features})`. The values areinitialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in\_features}}`bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.If :attr:`bias` is ``True``, the values are initialized from:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where:math:`k = \frac{1}{\text{in\_features}}`"""cls_to_become = Linear # type: ignore[assignment]weight: UninitializedParameterbias: UninitializedParameter # type: ignore[assignment]def __init__(self, out_features: int, bias: bool = True,device=None, dtype=None) -> None:factory_kwargs = {'device': device, 'dtype': dtype}# bias is hardcoded to False to avoid creating tensor# that will soon be overwritten.super().__init__(0, 0, False)self.weight = UninitializedParameter(**factory_kwargs)self.out_features = out_featuresif bias:self.bias = UninitializedParameter(**factory_kwargs)def reset_parameters(self) -> None:if not self.has_uninitialized_params() and self.in_features != 0:super().reset_parameters()def initialize_parameters(self, input) -> None: # type: ignore[override]if self.has_uninitialized_params():with torch.no_grad():self.in_features = input.shape[-1]self.weight.materialize((self.out_features, self.in_features))if self.bias is not None:self.bias.materialize((self.out_features,))self.reset_parameters()
# TODO: PartialLinear - maybe in sparse?
相关文章:
pytorch中的torch.nn.Linear
torch.nn.Linear是pytorch中的线性层,应该是最常见的网络层了,官方文档:torch.nn.Linear。 torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone)其中,in_features表示输入的维度;out_featu…...

03-MySQl数据库的-用户管理
一、创建新用户 mysql> create user xjzw10.0.0.% identified by 1; Query OK, 0 rows affected (0.01 sec) 二、查看当前数据库正在登录的用户 mysql> select user(); ---------------- | user() | ---------------- | rootlocalhost | ---------------- 1 row …...

知乎:多云架构下大模型训练,如何保障存储稳定性?
知乎,中文互联网领域领先的问答社区和原创内容平台,2011 年 1 月正式上线,月活跃用户超过 1 亿。平台的搜索和推荐服务得益于先进的 AI 算法,数百名算法工程师基于数据平台和机器学习平台进行海量数据处理和算法训练任务。 为了提…...

JWFD流程图转换为矩阵数据库的过程说明
在最开始设计流程图的时候,请务必先把开始节点和结束节点画到流程图上面,就是设计器面板的最开始两个按钮,先画开始点和结束点,再画中间的流程,然后保存,这样提交到矩阵数据库就不会出任何问题,…...

GT收发器第一篇_总体结构介绍
文章目录 前言GT收发器介绍 前言 之前写过一篇简单介绍GT的文章https://blog.csdn.net/m0_56222647/article/details/136730026,可以先通过这篇文章对整体进行简单了解一下。 GT收发器介绍 参考xilinx手册ug476 对于7系列的FPGA,共有3个系列…...

[图像处理] MFC载入图片并进行二值化处理和灰度处理及其效果显示
文章目录 工程效果重要代码完整代码参考 工程效果 载入图片,并在左侧显示原始图片、二值化图片和灰度图片。 双击左侧的图片控件,可以在右侧的大控件中,显示双击的图片。 初始画面: 载入图片: 双击左侧的第二个控件…...
centos7.5 安装gitlab-ce (Omnibus)
一、安装前置依赖 # 安装基础依赖 $ sudo yum -y install policycoreutils openssh-server openssh-clients postfix# 启动 ssh 服务 & 设置为开机启动 $ sudo systemctl enable sshd & sudo systemctl start sshd二、安装gitlab rpm包 # 下载并执行社区版脚本 curl …...

深入理解MapReduce:从Map到Reduce的工作原理解析
当谈到分布式计算和大数据处理时,MapReduce是一个经典的范例。它是一种编程模型和处理框架,用于在大规模数据集上并行运行计算任务。MapReduce包含三个主要阶段:Map、Shuffle 和 Reduce。 ** Map 阶段 ** Map 阶段是 MapReduce 的第一步&am…...

初始Java篇(JavaSE基础语法)(5)(类和对象(上))
个人主页(找往期文章包括但不限于本期文章中不懂的知识点):我要学编程(ಥ_ಥ)-CSDN博客 目录 面向对象的初步认知 面向对象与面向过程的区别 类的定义和使用 类的定义格式 类的实例化 this引用 什么是this引用? this引用…...

机器人---人形机器人之技术方向
1 背景介绍 在前面的文章《行业杂谈---人形机器人的未来》中,笔者初步介绍了人形机器人的未来发展趋势。同智能汽车一样,它也会是未来机器人领域的一个重要分支。目前地球上最高智慧的结晶体就是人类,那么人形机器人的未来会有非常大的发展空…...

MySQL MHA高可用数据库
文章目录 MySQL MHA高可用数据库搭建MySQL MHA模拟故障故障修复: MySQL MHA高可用数据库 MHA(MySQL High Availability)是一个开源的高可用解决方案,用于实现MySQL主从复制集群的故障自动切换。MHA的主要目的是确保MySQL数据库集…...
LVS(Layout versus schematic)比的是什么?
概述 LVS不是一个简单地将版图与电路原理图进行比较的过程,它需要分两步完成。第一步“抽取”,第二步“比较”。首先根据LVS提取规则,EDA 工具从版图中抽取出版图所确定的网表文件;然后将抽取出的网表文件与电路网表文件进行比较…...

从0开始搭建基于VUE的前端项目(三) Vuex的使用与配置
准备与版本 vuex 3.6.2(https://v3.vuex.vuejs.org/zh/)概念 vuex是什么? 是用作 【状态管理】的 流程图如下 state 数据状态,成员是个对象 mapState 组件使用this.$store.state.xxx获取state里面的数据 getters 成员是个函数,方便获取state里面的数据,也可以加工数据 ma…...

python统计分析——双样本均值比较
参考资料:python统计分析【托马斯】 1、配对样本t检验 在进行两组数据之间的比较时,有两种情况必须区分开。在第一种情况中,同一对象在不同时候的两个记录值进行相互比较。例如,用学生们进入初中时的身高和他们一年后的身高&…...

三台电机的顺启逆停
1,开启按钮输入信号是 电机一开始启动,5秒回电机2启动 ,在5秒电机三启动 关闭按钮输入时电机3关闭 ,5秒后电机2关闭 最后电机一关闭 2,思路开启按钮按下接通电机1 并且接通定时器T0 定时器T0 到时候接通电机2 并且开…...

彩虹外链网盘界面UI美化版超级简洁好看
彩虹外链网盘,是一款PHP网盘与外链分享程序,支持所有格式文件的上传,可以生成文件外链、图片外链、音乐视频外链,生成外链同时自动生成相应的UBB代码和HTML代码,还可支持文本、图片、音乐、视频在线预览,这…...

企业微信知识库:从了解到搭建的全流程
你是否也有这样的疑惑:为什么现在的企业都爱创建企业微信知识库?企业微信知识库到底有什么用?如果想要使用企业微信知识库企业应该如何创建?这就是我今天要探讨的问题,感兴趣的话一起往下看吧! | 为什么企业…...
【华为OD机试C++】合并表记录
《最新华为OD机试题目带答案解析》:最新华为OD机试题目带答案解析,语言包括C、C++、Python、Java、JavaScript等。订阅专栏,获取专栏内所有文章阅读权限,持续同步更新! 文章目录 描述输入描述输出描述示例1示例2代码描述 数据表记录包含表索引index和数值value(int范围的…...

uniapp中使用u-popup组件导致的弹框下面的页面可滑动现象
添加代码: touchmove.stop.prevent"()>{}"...

数字孪生|山海鲸可视化快速入门
哈喽,你好啊,我是雷工! 今天继续学习山海鲸可视化软件,以下为学习记录。 (一)新建项目 1.1、打开软件后,默认打开我的项目界面,初次打开需要注册,可以通过手机号快速注册。 点击“新建”按钮,新建一个项目。 1.2、根据项目需要选择一个快捷的项目模板,填写项目名称…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...