当前位置: 首页 > news >正文

深度学习评价指标(1):目标检测的评价指标

1. 简述

        在计算机视觉/深度学习领域,每一个方向都有属于自己的评价指标。通常在评估一个模型时,只需要计算出相应的评价指标,便可以评估算法的性能。同时,所谓SOTA,皆是基于某一评价指标进行的评估。

        接下来,我们将对目标检测领域的评价指标做一个大体的说明,其中涉及Precision,AP,mAP,Accuracy等指标。

2. IOU

        交并比,表示实际识别框与目标标注框的重合程度,如下绿色框为数据标注框,红色为实际识别框(预测框),两者做交集面积与并集面积比,衡量识别性能;

3. Precision(查准率)

        针对特定类别α,衡量识别出的目标中,识别正确的数量占比。

        假设识别出的类别α有P个目标,其中识别正确的为TP个,错误的为FP个,有关系P = TP+FP,识别精准率Precision计算如下:

Precision=\frac{TP}{TP+FP}

        更进一步,识别正确的判定可依据IOU为50%,75%或95%来认定,对应的有Precision@0.5,Precision@0.75和Precision@0.95。

Precision表示所有被检测为正例的情况下,实际为正例的比例。

4. Recall, 召回率(查全率)

        假设当前样本中共有M个类别为α的目标,识别出的目标数量为TP个,未被识别的有FN个,及M = TP + FN,则有如下关系:

Recall=\frac{TP}{TP+FN}

        Recall表示所有应该被检测为正例的情况是,实际被检测为正例的情况。

特别注意:

        查准率和查全率往往是一个互相矛盾的优化方向。如果我们想要提高查准率,那么我们可以通过提高阈值,这样可以检测出实际更可靠的正例,提高(TP)的数量,那些被错误检测为正例(TP)的数量相应会减小。这样一来,Precision就会变大。

但是这个时候,一些实际为正例,但没有被检测到的目标(FN)的数量就会增加,这个时候Recall会变小。

5. AP(平均精度)

        平均精度是针对单个类来讲的,首先计算单个类的PR曲线,AP则是PR曲线下的面积。

        选取IOU取[0.5 : 0.95 : 0.05]([start:stop:step]),测得每一个IOU下的Precision和Recall,计算PR曲线下的面积。

        如下图所示,为PR曲线样例,其中横轴一般为Recall,纵轴一般为Precision。

6. mAP,平均精度均值

        AP是针对单个类的评价参数,而mAP则是针对多个类的一个综合评价参数。如果有多个类别,我们分别计算每一个类别的AP,然后取平均,得到mAP(mean Average Precision)。

mAP=\frac{\sum_{i=1}^{N}AP_{i}}{N}

        其中,AP_{i}为类别i的平均精度,N为类别数。

6. Accuracy

        以上查准率和查全率以及对应的综合评价参数都是针对正例而言的。而准确率则是针对所有的正负例,是一个综合的评价指标。

Accuracy=\frac{TP+TN}{TP+TN+FP+FN}

        预测的所有目标中,预测正确的占比。准确率提供了模型对所有类别预测准确性的总体评估,它是一个直观的性能指标,表明模型在所有预测中有多少是正确的。

        准确率提供了模型对所有类别预测的整体准确度,但它可能受到类别不平衡的影响。例如,如果负类样本远多于正类样本,那么即使模型只是简单地将所有样本预测为负类,准确率也可能会很高,但这并不意味着模型具有良好的预测性能。

相关文章:

深度学习评价指标(1):目标检测的评价指标

1. 简述 在计算机视觉/深度学习领域,每一个方向都有属于自己的评价指标。通常在评估一个模型时,只需要计算出相应的评价指标,便可以评估算法的性能。同时,所谓SOTA,皆是基于某一评价指标进行的评估。 接下来&#xff0…...

jmeter性能压测的标准和实战中会遇到的问题

1.性能标准建议 CPU 使用率:不超过 70% 内存使用率:不超过 70% 磁盘:%util到达80%严重繁忙 (os.disIO.filesystem.writeKbPS 每秒写入的千字节) 响应时间:95%的响应时间不超过8000ms 事务成功率&#xff1a…...

6-82 求链式线性表的倒数第K项

给定一系列正整数,请设计一个尽可能高效的算法,查找倒数第K个位置上的数字。 输入格式: 输入首先给出一个正整数K,随后是若干非负整数,最后以一个负整数表示结尾(该负数不算在序列内,不要处理)。 输出格式: 输出倒数第K个位置上的数据。如果这个位置不存在,输出错误…...

CDH集群hive初始化元数据库失败

oracle数据库操作: 报错如下:命令 (Validate Hive Metastore schema (237)) 已失败 截图如下: 后台日志部分摘录: WARNING: Use “yarn jar” to launch YARN applications. SLF4J: Class path contains multiple SLF4J binding…...

【ESP32S3 Sense接入语音识别+MiniMax模型对话】

1. 前言 围绕ESP32S3 Sense接入语音识别MiniMax模型对话展开,首先串口输入“1”字符,随后麦克风采集2s声音数据,对接百度在线语音识别,将返回文本结果丢入MiniMax模型,进而返回第二次结果文本,实现语言对话…...

【Java初阶(七)】接口

❣博主主页: 33的博客❣ ▶文章专栏分类: Java从入门到精通◀ 🚚我的代码仓库: 33的代码仓库🚚 目录 1.前言2.接口2.1语法规则2.2接口使用2.3接口特性2.4实现多个接口2.5接口使用实例2.6Clonable接口和深拷贝 3.Object类3.1对象比较equals方法3.2hashcod…...

Mac OS上使用matplotlib库显示中文字体

文章目录 问题描述解决步骤参考文章 问题描述 如果我们想要使用matplotlib画图的话,可能会出现下面的这种warning: UserWarning: Glyph 24212 (\N{CJK UNIFIED IDEOGRAPH-5E94}) missing from current font.解决步骤 解决这个问题,可以按照下面的做法…...

IP种子是什么?理解和应用

在网络世界中,IP种子是一个广泛应用于文件共享和网络下载领域的概念。它是一种特殊的标识符,用于识别和连接到基于对等网络(P2P)协议的文件共享网络中的用户或节点。本文将深入探讨IP种子的含义、作用以及其在网络中的应用。 IP地…...

车载以太网AVB交换机 gptp透明时钟 5口 全千兆 SW1500

全千兆车载以太网交换机 一、产品简要分析 5端口千兆车载以太网交换机,包含4个通道的1000BASE-T1接口使用罗森博格H-MTD和泰科MATEnet双接口,1个通道1000BASE-T标准以太网(RJ45接口),可以实现车载以太网多通道交换,千兆和百兆车载…...

Can‘t connect to server on ‘localhost‘ (10061)

问题:电脑关机重启后,连接不上mysql了,报错信息如下:2002 - Cant connect to server on localhost (10061)解决办法:很大的原因是mysql服务没有启动,需要你重启一下mysql: 以管理员的身份运行cm…...

虹科Pico汽车示波器 | 免拆诊断案例 | 2018款东风风神AX7车发动机怠速抖动、加速无力

一、故障现象 一辆2018款东风风神AX7车,搭载10UF01发动机,累计行驶里程约为5.3万km。该车因发动机怠速抖动、加速无力及发动机故障灯异常点亮而进厂维修,维修人员用故障检测仪检测,提示气缸3失火;与其他气缸对调点火线…...

zookeeper如何管理客户端与服务端之间的链接?(zookeeper sessions)

zookeeper客户端与服务端之间的链接用zookeeper session表示。 zookeeper session有三个状态: CONNECTING, ASSOCIATING, CONNECTED, CONNECTEDREADONLY, CLOSED, AUTH_FAILED, NOT_CONNECTED(start时的状态) 1、CONNECTING 。 表明客户…...

【Java多线程】7——阻塞队列线程池

7 线程池 ⭐⭐⭐⭐⭐⭐ Github主页👉https://github.com/A-BigTree 笔记仓库👉https://github.com/A-BigTree/tree-learning-notes 个人主页👉https://www.abigtree.top ⭐⭐⭐⭐⭐⭐ 如果可以,麻烦各位看官顺手点个star~&#x…...

同步复位和异步复位的优缺点

同步复位 优点:能确保电路是100%的; 同步复位可以综合处更小的触发器; 可以保证复位只发生在有效时钟边沿,过滤掉复位信号毛刺; 内部逻辑产生的复位信号,采用同步复位可以有效过滤掉毛刺。 缺点&#xff1a…...

Code Review(代码审查)

代码审查是软件开发生命周期的重要组成部分。它能显著提高开发人员的代码质量。 这个过程就像写一本书。作者写好了内容,出版社编辑对其进行了校审,所以没有出现任何错误,例如将“你”与“你的”混淆。这个案例中,代码审查是阅读…...

《拆解一切问题》如何成为解决难题的高手 - 三余书屋 3ysw.net

拆解一切问题:如何成为解决难题的高手 今天给大家分享的这本书叫做《拆解一切问题》,标题看起来确实有点虚,在没有读这本书之前,会让人感觉似乎只要读完学会书中的内容,就可以解决一切问题了。但事实上这种认识是误解…...

matlab——基于三维激光扫描点云的树冠体积计算方法

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、原理概述 针对树冠形状不规则,树冠体积难以测量和计算的问题,提出一种基于三…...

如何在jupyter使用新建的虚拟环境以及改变jupyter启动文件路径。

对于刚刚使用jupyter的新手来说,经常不知道如何在其中使用新建的虚拟环境内核,同时,对于默认安装的jupyter,使用jupyter notebook命令启动 jupyter 以后往往默认是C盘的启动路径,如下图所示,这篇教程将告诉…...

Exception in thread “main“ com.fasterxml.jackson.databind.JsonMappingException:

问题:jaskson反序列化超出最大长度 Caused by: com.fasterxml.jackson.core.exc.StreamConstraintsException: String length (5043456) exceeds the maximum length (5000000) 场景:前端传递过大base64 原因: jaskon默认已经限制了最大长…...

第三十九章 保护与 IRIS 的 Web 网关连接

文章目录 第三十九章 保护与 IRIS 的 Web 网关连接配置 Web 网关的连接安全最低连接安全性(不推荐)简单的用户名/密码验证 第三十九章 保护与 IRIS 的 Web 网关连接 本页介绍用于保护从 Web Gateway 到 IRIS 的连接的选项。与 IRIS 的 Web 网关连接可以…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...