当前位置: 首页 > news >正文

【数据结构与算法初阶(c语言)】插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序、归并排序、计数排序-全梳理(万字详解,干货满满,建议三连收藏)

目录

1.排序的概念及其运用

1.1排序的概念

1.2排序运用

1.3常见的排序算法

2.插入排序 

2.1 原理演示:​编辑

2.2 算法实现 

2.3 算法的时间复杂度和空间复杂度分析 

 3.希尔排序

3.1算法思想

3.2原理演示

3.3代码实现

3.4希尔算法的时间复杂度

4.冒泡排序

4.1冒泡排序原理(图解)

4.2.冒泡排序实现

4.3冒泡排序封装为函数

4.4 冒泡排序代码效率改进。 

5.堆排序

5.1升序建大堆,降序建小堆

 5.2 建堆的时间复杂度

5.2.1 向下调整建堆

5.2.2向上调整建堆

5.3 排序实现

6.选择排序 

6.1基本思想:

6.2算法演示

6.3代码实现 

6.4时间复杂度分析

7.快速排序

7.1 hoare版本

7.1.1算法图解

7.1.2代码实现 

7.1.3 算法优化---三数取中

7.2挖坑法快排 

7.2.1算法图解

7.2.2 代码实现

7.3 前后指针法

 7.4快速排序进一步优化

7.5快速排序非递归写法

8.归并排序

9.计数排序

10.结语


深度优先遍历 dfs  : 先往深处走,走到没有了再往回,前序遍历 一般是递归

广度优先遍历  bfs  层序遍历  一般用队列 

1.排序的概念及其运用

1.1排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排 序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2排序运用

1.3常见的排序算法

2.插入排序 

直接插入排序是一种简单的插入排序法

算法思想:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为 止,得到一个新的有序序列

和我们玩扑克牌整理牌的时候是非常相像的

将我们的摸到的牌作为手里的牌的最后一张,从倒数第一张开始到第一张逐次比较,如果当前牌大于前一张就放置在当前位置,如果小于那就向前移动,最坏的情况就是每次摸到牌都要逐渐比较放到最前面。

2.1 原理演示:

2.2 算法实现 

由原理图我们知道这个算法的实现就是第二个先和1第一个比较,调整位置,第三个又和前两个进行比较调整位置。

第一次 调整前两个位置

第二次 调整前三个位置

第三次 调整前四个位置

。。。

n个元素,就调整n-1次

每一次调整,都是倒数一个与倒数第二个比较调整完,倒数第二个又和倒数第三个做比较,知道比较到倒数最后一个也就是最开始的一个。

void InserPort(int* a, int n)
{int i = 0;for (i = 0; i < n - 1; i++)//n个元素调整n-1次{int end = i;int tmp = a[end + 1];//最后一个元素值给tmpwhile (end >= 0){if (tmp < a[end]){//交换a[end + 1] = a[end];a[end] = tmp;}else{//不动break;}//继续比较调整前两个end--;}}
}

2.3 算法的时间复杂度和空间复杂度分析 

上述代码就是最坏的情况:

时间复杂度为O(N^2)

空间复杂度为O(1)

.元素集合越接近有序,直接插入排序算法的时间效率越高

 3.希尔排序

3.1算法思想

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个 组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当间距到达=1时,所有记录在统一组内排好序
通俗来讲:就是先进行与排序再直接插入排序
预排序的操作是将数据以同一个间隔的数据分为一组:使得更大的数更快的到一段,更小的数更快到一端。

3.2原理演示

3.3代码实现

ShellSort(int* a, int n)
{int i = 0;int gap = n;while (gap > 1){gap /= 2;for (i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end>gap){if (tmp < a[end]){a[end + gap] = a[end];a[end] = tmp;}else{break;}end -= gap;}}}
}

3.4希尔算法的时间复杂度

希尔排序的时间复杂度不好计算,因为 gap 的取值方法很多,导致很难去计算,因此在好些树中给出的 希尔排序的时间复杂度都不固定

《数据结构》--严蔚敏

 《数据结构-用面相对象方法与C++描述》--- 殷人昆

按照:

来计算

空间复杂度为O(1)

稳定性:不稳定

4.冒泡排序

 核心思想:两两相邻的元素相比较是一种交换排序

4.1冒泡排序原理(图解)

4.2.冒泡排序实现

通过图解原理我们可以发现规律(以10个元素排列举例)

1.每一趟比较完全完成就把这一趟数据的最大数放在最后,第一趟是10个数据中的最大值9在最后,第二趟是9个数据中的8在最后,那么我们10个元素就要循环9趟,那么n个数据,就要循环n - 1趟。

2.第一趟是10个数据,就有9对数据比较,那么第二趟,就有8对数据进行比较。如果一趟有n个数据就要比较n - 1对数据。

3.所以需要两层循环,外层控制趟数,内层控制每一趟要比较的次数。

看如下实现。

int main()
{int len[10] = { 0 };int i = 0;for (i = 0; i < 10; i++){scanf("%d",&len[i]);}int n = sizeof(len) / sizeof(len[0]);//printf("%d", n);int x = 0;for (x = 0; x < n; x++){int y = 0;{for (y = 0; y < n-1 - x; y++){if (len[y] > len[y + 1]){int temp = 0;temp = len[y];len[y] = len[y + 1];len[y + 1] = temp;//交换}}}}int j = 0;for (j = 0; j < 10; j++){printf(" %d ", len[j]);}
}

运行结果如图,大家也可以用源码自己体验一下效果: 

 

4.3冒泡排序封装为函数

现在已经实现了冒泡排序,为了以后的方便,我们来试着将这个冒泡排序模块功能封装为一个函数。让我们一起来看看自定义为函数有那些坑。

   按照上述排序规则和封装函数的方法,我们将数组作为一个函数参数,传递给冒泡排序函数来执行冒泡排序,我们来看一下: 

void BBurd_sort(int arr[10])
{int n= sizeof(arr) / sizeof(arr[0]);int x = 0;for (x = 0; x < n; x++){int y = 0;{for (y = 0; y < n - 1 - x; y++){if (arr[y] > arr[y + 1]){int temp = 0;temp = arr[y];arr[y] = arr[y + 1];arr[y + 1] = temp;//交换}}}}}
int main()
{int arr[10] = { 0 };int i = 0;for (i = 0; i < 10; i++){scanf("%d", &arr[i]);}//int sz = sizeof(arr) / sizeof(arr[0]);BBurd_sort(arr);int j = 0;for (j = 0; j < 10; j++){printf(" %d ", arr[j]);}return 0;
}

我们观察到没有发生排序,我们调试看一下:

问题所在:我们这里想要实现的功能是n 保存的是数组的大小,那么应该是10才对,为什么是2呢。

思考:sizeof(arr[0] 求的是一个整形数组元素的大小那么其大小就应该是4字节,

那么说明我们的sizeof(arr)就是8字节,那么只有可能我们这里的arr,并不是一整个数组,而是一个地址 (地址也就是指针,在32位操作系统下面大小是4个字节,64位操作系统下是8个字节),那就说明我们这里的arr实质上是一个指针,保存的是数组首元素的地址。

所以在函数里面是没有办法求出这个数组的大小,解决办法,把函数的大小作为一个函数的参数一起传递,看一下改进效果。

程序正常实现,附上源码。大家体验一下效果。 

void BBurd_sort(int arr[10], int n)
{int x = 0;for (x = 0; x < n; x++){int y = 0;{for (y = 0; y < n-1 - x; y++){if (arr[y] > arr[y + 1]){int temp = 0;temp = arr[y];arr[y] = arr[y + 1];arr[y + 1] = temp;//交换}}}}}
int main()
{int arr[10] = { 0 };int i = 0;for (i = 0; i < 10; i++){scanf("%d", &arr[i]);}int sz = sizeof(arr) / sizeof(arr[0]);BBurd_sort(arr, sz);int j = 0;for (j = 0; j < 10; j++){printf(" %d ", arr[j]);}return 0;
}

4.4 冒泡排序代码效率改进。 

思考:

对于这样一个有序数列,我们如果执行的话,我们的自定义函数就还是会跑一遍,那么这样实际效率并不高。所以想能不能改进一下我我们的代码。

再次浏览原理图,我们不难发现这样一个规律,只要数据是乱序一趟下来就会有元素在发生交换。

比如:

9 1 2 3 4 5 6 7 8

这样的数据,第一趟会有元素交换,第二趟就没有。

那么我们可以这样,只要某一趟没有交换,说明此时我们的数列已经有序了就跳出

只要发生交换就继续。

那么看一下改进代码: 

void BBurd_sort(int arr[10], int n)
{int x = 0;for (x = 0; x < n; x++){int flag = 0;int y = 0;for (y = 0; y < n-1 - x; y++){if (arr[y] > arr[y + 1]){int temp = 0;temp = arr[y];arr[y] = arr[y + 1];arr[y + 1] = temp;//交换flag = 1;//发生了交换就改变flag}}//执行完一趟就判断一下有没有交换,有交换就继续,没有交换就直接退出,不用排序了if (flag == 0){break;}}}
int main()
{int arr[10] = { 0 };int i = 0;for (i = 0; i < 10; i++){scanf("%d", &arr[i]);}int sz = sizeof(arr) / sizeof(arr[0]);BBurd_sort(arr, sz);int j = 0;for (j = 0; j < 10; j++){printf(" %d ", arr[j]);}return 0;
}

5.堆排序

堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是 通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
使用堆排序前首先要建立堆:

使用堆结构对一组数据进行排序,方便对数据进行处理。粗暴办法就是将原数组数据插入堆,再取堆数据覆盖,这种方法首先得有堆结构,其次插入数据就要额外开辟空间。

最好的方式就是直接将原数组或者原来的这组数据变成堆。将原数组直接看成一颗完全二叉树,一般都不是堆。那么就要将原数据之间调成堆----建堆

建堆不是插入数据,只是使用向上调整的思想。在原有数据上进行更改,调换。

5.1升序建大堆,降序建小堆

一般我们要利用堆结构将一组数据排成升序,就建立大堆

要利用堆结构将一组数据排成降序,就建立小堆。

void HeapSort(int* a, int n)
{//对数据进行建堆for (int i = 0; i < n; i++){AdjustUp(a, 1);}//堆排序---向下调整的思想int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;//让n-1个数据调整成堆选出次小}}

 5.2 建堆的时间复杂度

5.2.1 向下调整建堆

讨论最坏的时间复杂度

将下图进行建立一个大堆

实现:

void AdjustDown(int* a, int parent, int n)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child] < a[child + 1]){child++;//找出左右孩子中大的一个1}if (a[child] >a[parent]){//交换Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}
//堆排序//首先将数据建堆//升序建大堆,降序建小堆//采用向下调整建堆的方式时间复杂度较小int child = n - 1;int parent = (child - 1) / 2;while (parent >=0){AdjustDown(a, parent, n);parent--;}

假设有h层,这里测算的时间复杂度是最坏的情况,那么就相当于调整的是一个满二叉树的堆。

第h层  ,共有2^(h-1)个节点, 需要调整0次

第h-1层,共有2^(h-2)个节点 ,每个节点调整一次,调整:2^(h-2)*1次

第h-2层,共有2^(h-3)个节点,每个节点最坏向下调整两次,调整2^(h-3)*2次

        :

        :

        :

第3层,共有2^(2)个节点,每个节点向下调整h-3次,调整2^(2)*(h-3)次

第2层,共有2^(1)个节点,每个节点向下调整h-2次,调整2^(1)*(h-2)次

第1层,共有2^(0)个节点,每个节点向下调整h-1次,调整2^(0)*(h-1)次

时间复杂度为:

T(h) = 2^(0)*(h-1)+2^(1)*(h-2)+2^(2)*(h-3)+…………2^(h-3)*2+2^(h-2)*1①

2T(h) =  2^(1)*(h-1)+2^(2)*(h-2)+2^(3)*(h-3)+…………2^(h-2)*2+2^(h-1)*1

②-①得

T(h) = 2^(1)+2^(2)……+2^(h-2)+2^(h-1)+1-h

=2^0+2^(1)+2^(2)……+2^(h-2)+2^(h-1)-h

=2^h-1-h

由于h是树的层高,与节点个数的关系是:N = 2^h-1

h = log(n+1)

所以时间复杂度为:

O(N) = N-longN+1~O(N)

5.2.2向上调整建堆

假设有h层,这里测算的时间复杂度是最坏的情况,那么就相当于调整的是一个满二叉树的堆。

第2层,共有2^1个节点,每个节点向上调整1次

 第3层,共有2^2个节点,每个节点向上调整2次

        

        :

        :

        :

第h-2层,共有2^(h-3)个节点,每个节点向上调整h-3次

第h-1层,共有2^(h-2)个节点,每个节点向上调整h-2次

第h层  ,共有2^(h-1)个节点,每个节点向上调整h-1次

时间复杂度为:T(h) = 2^1*1+2^2*2+2^3*3……2^(h-3)*(h-3)+2^(h-2)*(h-2)+2^(h-1)*(h-1)

                       2 T(h) = 2^2*1+2^3*2+2^4*3……2^(h-2)*(h-3)+2^(h-1)*(h-2)+2^(h)*(h-1)

T(h) = -2-(2^2+2^3+2^4…………2^(h-1))+2^h(h-1)

= -(2^0+2^1+2^2…………2^(h-1))+2^h(h-1)+2^0

=2^h*(h-2)+2

由于h是树的层高,与节点个数的关系是:N = 2^h-1

h = log(n+1)

T(N) = (N+1)log(N+1)-2N-1

5.3 排序实现

排序和删除的原理是一样的,先找最大/最小然后次大/次小,每次选取数据后不会将后面数据覆盖上来,否则就会导致关系全乱,可能次大数据就要重新建堆,增加了工作量了。而是通过堆顶元素和最后一个数据交换位置过后,向下调整思想,将排除刚刚调整的尾部最大数据除外的剩下数据看成堆,循环排序。

最后发现:大堆这样处理的数据最大的数据在最后,最小的在最前,小堆相反。 

void AdjustDown(int* a, int parent, int n)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child] < a[child + 1]){child++;//找出左右孩子中大的一个1}if (a[child] >a[parent]){//交换Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}
//堆排序void HeapSort(int* a, int n)
{//首先将数据建堆//升序建大堆,降序建小堆//采用向下调整建堆的方式时间复杂度较小int child = n - 1;int parent = (child - 1) / 2;while (parent >=0){AdjustDown(a, parent, n);parent--;}//排序int end = n - 1;while (end >= 0){Swap(&a[0], &a[end]);AdjustDown(a, 0, end);end--;}}

6.选择排序 

6.1基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的 数据元素排完 。也可第一轮将最小的放在一端,将最大的放在一端,第二轮选出次大次小。

6.2算法演示

6.3代码实现 

//选择排序void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin <end){int min = begin;int max = begin;int i = 0;for (i = begin+1; i <= end; i++){if (a[min] > a[i]){min = i;}if (a[max] < a[i]){max = i;}}Swap(&a[begin], &a[min]);if (begin == max){max = min;}Swap(&a[end], &a[max]);end--;begin++;}}

6.4时间复杂度分析

. 时间复杂度: O(N^2)
如果有10个数据: 10 9 8 7 6 5 4 3 2 1
第一次:比较2(n-1次)
第二次比较:2(n-3)次
最后一次比较:1次
总共比较:n/2次,时间复杂度为:1/4n^2
3. 空间复杂度:O(1)
4. 稳定性:不稳定

7.快速排序

算法思想:

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右 子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

7.1 hoare版本

单趟:

7.1.1算法图解

为什么相遇的位置一定是比k值小的值是因为右边先走,那么每次左边停下来的值经过交换一定是比k值大,此时r继续走,找到比k值大的数才会停下来,所以如果右边先走,停下来的地方值一定小于k,如果左边先走,停下来的地方的值一定大于k。 

将上述过程递归就可以得到一个有序的序列:

7.1.2代码实现 

int Partsort(int* a, int left, int right)
{int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){right--;//如果左右两边同时是key,此时如果不取等号就回陷入死循环//再次判断left<key是因为值都比k大或者都比k小的极端情况出现越界问题,因为外层循环只判断了一次,里面的--++的循环没有判断}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}//快速排序
void QuickSort(int* a, int left,int right)
{if (left >= right){//大于为空,等于只有一个值return;}int keyi = Partsort(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

7.1.3 算法优化---三数取中

为了保证我们快排的效率呢,我们试着调整一下我们选择key值的策略。

每次选取三个数中中间值的一个作为我们的key,并且将这个值换到数组的最左边:

int GetMid(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right]){return mid;}else if (a[left] > a[right]){return left;}else{return right;}}else{if (a[mid > a[right]]){return mid;}else if (a[left] < a[right])//mid是最小的{return left;}else{return right;}}
}
int Partsort(int* a, int left, int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){right--;//如果左右两边同时是key,此时如果不取等号就回陷入死循环//再次判断left<key是因为值都比k大或者都比k小的极端情况出现越界问题,因为外层循环只判断了一次,里面的--++的循环没有判断}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}//快速排序
void QuickSort(int* a, int left,int right)
{if (left >= right){//大于为空,等于只有一个值return;}int keyi = Partsort(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

这样我们的逆序排序这种对于快排最坏的情况就变成最好的情况,十万个数据1毫秒就可以排好。

7.2挖坑法快排 

7.2.1算法图解

7.2.2 代码实现


//挖坑法
int Partsort2(int* a, int left, int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int ken = a[left];int hole = left;while (left < right){while (left < right && a[right] >= ken){right--;}a[hole] = a[right];hole = right;while (left < right && a[left] <= a[ken]){left++;}a[hole] = a[left];hole= left;}a[hole] = ken;return hole;}

7.3 前后指针法

逻辑:cur找比key值小的值,然后prev遇到比key值大的就停下来,直到cur遇到比key值小的值过后就交换。

prev:

在cur没有遇到比key值大的值的时候,prev紧紧的跟着cur

在cur遇到比key值大的值的时候,prev就停下来了,prev在比key大的一组值的前面。

//前后指针
int Partsort3(int* a, int left, int right)
{int mid = GetMid(a, left, right);Swap(&a[left], &a[mid]);int keyi = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[keyi]&&prev++ != cur)//防止开始位置自己跟自己交换{Swap(&a[prev++], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);return prev;}

 7.4快速排序进一步优化

按照上面的方法实际主题来说,大思想就是递归,递归是有消耗的,而且,最后几层的递归往往是最大的,如果当递归区间的数值减少到一定程度,我们就不递归了,特别是到最后一两层的时候,那么排序的效率就会有提升。

//快速排序
void QuickSort(int* a, int left,int right)
{if (left >= right){//大于为空,等于只有一个值return;}if ((right - left + 1) > 10){int keyi = Partsort(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}else{InserPort(a + left, right - left + 1);}
}

小区间优化,编译器对递归优化也比较好,小区间不在递归,降低递归次数

7.5快速排序非递归写法

使用栈保存每次划分的区间

void QuickSortNonR(int* a, int left, int right)
{
Stack st;
StackInit(&st);
StackPush(&st, left);
StackPush(&st, right);
while (StackEmpty(&st) != 0)
{right = StackTop(&st);StackPop(&st);left = StackTop(&st);StackPop(&st);if(right - left <= 1)continue;int div = PartSort1(a, left, right);// 以基准值为分割点,形成左右两部分:[left, div) 和 [div+1, right)StackPush(&st, div+1);StackPush(&st, right);StackPush(&st, left);StackPush(&st, div);
}StackDestroy(&s);
}
快速排序的特性总结:
1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(logN)
4. 稳定性:不稳定

 

8.归并排序

8.1排序思想:

基本思想:
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有 序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 

8.2 算法图解 

void _MergeSort(int* a,  int* tmp,int begin,int end)
{if (end <= begin){//递归到只有一个或者没有就返回return;}//分割int mid = (end +begin) / 2;//没有那么均分也不是很影响//然后对左右区间进行递归操作 左区间:[begin mid] [mid+1,end}_MergeSort(a, tmp, begin, mid);_MergeSort(a, tmp, mid + 1, end);//归并到tmp数组里面,再拷贝回原数组int begin1 = begin, end1 = mid;//左区间int begin2 = mid + 1, end2 = end;//右区间int index = begin;//tmo数组中的对应位置while (begin <= end1 && begin2 <= end2)//需要同时将左右两边小的拿出来插入到tmp数组{if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++ ];//往后继续找,直到一个区间遍历完}else{tmp[index++] = a[begin2++];}}//出循环,有一边区间肯定遍历完了,但是不确定是那个区间while (begin1 <= end1){tmp[index++] = a[begin1++];//这种情况是左边区间没有遍历完,将后续数据放在这个区间的后面}while (begin2 <= end2){tmp[index++] = a[begin2++];//这种情况是右边区间没有遍历完,将后续数据放在这个区间的后面}//将tmp数组归并回原数组的对应位置,所以不一定是从0开始拷贝的memcpy(a + begin, tmp + begin, (end - begin + 1) * sizeof(int));//a+begin  tmp+begin表示当前区间的起始位置//end -begin+1 
}
//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);//为归并区间开辟存储数据的数组,空间复杂度产生于此if (tmp == NULL){perror("malloc");exit(-1);}//区间分割//递归不能每次都开辟空间,所以这里分离出子函数_MergeSort(a,tmp, 0, n - 1);free(tmp);tmp = NULL;
}

8.3 归并排序非递归实现 

//归并排序非递归版本
void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);//为归并区间开辟存储数据的数组,空间复杂度产生于此if (tmp == NULL){perror("malloc");exit(-1);}int gap = 1;while (gap < n){for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;//[begin1,end][begin2,end2]归并int index = i;//tmo数组中的对应位置while (begin1 <= end1 && begin2 <= end2)//需要同时将左右两边小的拿出来插入到tmp数组{if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];//往后继续找,直到一个区间遍历完}else{tmp[index++] = a[begin2++];}}//出循环,有一边区间肯定遍历完了,但是不确定是那个区间while (begin1 <= end1){tmp[index++] = a[begin1++];//这种情况是左边区间没有遍历完,将后续数据放在这个区间的后面}while (begin2 <= end2){tmp[index++] = a[begin2++];//这种情况是右边区间没有遍历完,将后续数据放在这个区间的后面}//将tmp数组归并回原数组的对应位置,所以不一定是从0开始拷贝的memcpy(a + i, tmp + i, (2 * gap) * sizeof(int));//a+begin  tmp+begin表示当前区间的起始位置//end -begin+1 }gap *= 2;}free(tmp);tmp = NULL;
} 

这个代码当数据为偶数个的时候就会越界

 奇数个二二归的时候也会越界,需要修正。

 

8.4归并排序的特性总结:

1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(N)
4. 稳定性:稳定

9.计数排序

9.1算法思想:

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

9.2 算法演示:

代码:
//计数排序
void MergeSort(int* a, int n)
{int min = a[0], max = a[0];for (int i = 0; i < n; i++){if (a[i] < min){min = a[i];}if (a[i] > max){max = a[i];}}int range = max - min + 1;int* count = (int*)malloc(sizeof(int) * range);if (count == NULL){perror("malloc fail");return;}memset(count, 0, sizeof(int) * range);//统计数据出现的个数for (int i = 0; i < n; i++){count[a[i] - min]++;}//排序int j = 0;for (int i = 0; i < range; i++){while (count[i]--){a[j++] = i + min;}}
}

9.3计数排序的特性总结:

  • 1. 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
  • 2. 时间复杂度:O(MAX(N,范围))
  • 3. 空间复杂度:O(范围)
  • 4. 稳定性:稳定

10.结语

以上就是本期所有内容,耗时半周,应该整理得比较全面,越往后面的排序代码实现就越难。知识含量蛮多,大家可以配合解释和原码运行理解。创作不易,大家如果觉得还可以的话,欢迎大家三连,有问题的地方欢迎大家指正,一起交流学习,一起成长,我是Nicn,正在c++方向前行的奋斗者,数据结构内容持续更新中,感谢大家的关注与喜欢。

相关文章:

【数据结构与算法初阶(c语言)】插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序、归并排序、计数排序-全梳理(万字详解,干货满满,建议三连收藏)

目录 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3常见的排序算法 2.插入排序 2.1 原理演示&#xff1a;​编辑 2.2 算法实现 2.3 算法的时间复杂度和空间复杂度分析 3.希尔排序 3.1算法思想 3.2原理演示 3.3代码实现 3.4希尔算法的时间复杂度 4.冒泡排序 4.1冒泡排…...

[蓝桥杯 2019 省赛 AB] 完全二叉树的权值

# [蓝桥杯 2019 省 AB] 完全二叉树的权值 ## 题目描述 给定一棵包含 $N$ 个节点的完全二叉树&#xff0c;树上每个节点都有一个权值&#xff0c;按从上到下、从左到右的顺序依次是 $A_1,A_2, \cdots A_N$&#xff0c;如下图所示&#xff1a; 现在小明要把相同深度的节点的权值…...

亮数据Bright Data,引领高效数据采集新体验

随着互联网和大数据的日益普及&#xff0c;我们对于高速、安全和无限畅通的网络体验追求越发迫切&#xff0c;随之而来的网络安全和隐私保护变得越来越重要。IP代理作为一种实用的代理工具&#xff0c;可以高效地帮我们实现网络数据采集&#xff0c;有效解决网络安全问题&#…...

C#学习笔记

一、事件派发器 在C#中&#xff0c;事件派发器通常是指事件委托和事件处理程序的组合&#xff0c;用于实现一种观察者设计模式。它允许对象在状态发生变化时通知其他对象&#xff0c;从而实现对象之间的解耦。 事件派发器的基本组成部分&#xff1a; 事件委托&#xff08;Ev…...

【A-006】基于SSH的新闻发布系统(含论文)

【A-006】基于SSH的新闻发布系统&#xff08;含论文&#xff09; 开发环境&#xff1a; Jdk7(8)Tomcat7(8)MySQLIntelliJ IDEA(Eclipse) 数据库&#xff1a; MySQL 技术&#xff1a; SpringStruts2HiberanteJSPJquery 适用于&#xff1a; 课程设计&#xff0c;毕业设计&…...

c语言-static

static作用&#xff1a;修饰变量和函数 修饰局部变量-静态局部变量 static未修饰局部变量 #include <stdio.h>void print() {int a 0;a;printf("%d ", a); }int main() {int i 0;for (i 0; i < 10; i){print();}return 0; }运行结果 static修饰局部变…...

zuul的性能调优

文章目录 zuul的性能调优Zuul参数剖析semaphore(信号量)ribbonhystrix高并发下常见Zuul异常熔断 zuul 1.x 与2.x的区别与总结 zuul的性能调优 在项目实践中&#xff0c;使用jemeter多线程并发访问微服务中的接口时候&#xff0c;在Zuul层出现异常、超时等&#xff0c;从而导致整…...

C++中的动态内存管理

1.C中动态内存管理 C语言内存管理方式在C中可以继续使用&#xff0c;但有些地方就无能为力&#xff0c;而且使用起来比较麻烦&#xff0c;因此C又提出了自己的内存管理方式&#xff1a;通过new和delete操作符进行动态内存管理。 1.1 new/delete操作内置类型 c语言和c的动态内存…...

es6的核心语法

在学习低代码时&#xff0c;经常有粉丝会问&#xff0c;低代码需要什么基础&#xff0c;es6就是基础中的一项。我们本篇是做一个扫盲&#xff0c;可以让你对基础有一个概要性的了解&#xff0c;具体的每个知识点可以深入进行了解&#xff0c;再结合官方模板就会有一个不错的掌握…...

Unity | 射线检测及EventSystem总结

目录 一、知识概述 1.Input.mousePosition 2.Camera.ScreenToWorldPoint 3.Camera.ScreenPointToRay 4.Physics2D.Raycast 二、射线相关 1.3D&#xff08;包括UI&#xff09;、射线与ScreenPointToRay 2.3D&#xff08;包括UI&#xff09;、射线与ScreenToWorldPoint …...

职业经验 2024 年测试求职手册

原贴地址: 2024 年测试求职手册 TesterHome 经历年前年后差不多 2 个月左右时候的求职&#xff0c;是时候总结复盘一下了&#xff0c;本打算在自己有着落再复盘&#xff0c;但是一想那时候似乎价值就没现在去做显得有意义一些&#xff0c;这篇帖子更多的是让大家看下有没有心…...

Spring Boot与Redis深度整合:实战指南

Spring Boot 整合 Redis 相当简单&#xff0c;它利用了 Spring Data Redis 项目&#xff0c;使得我们可以在 Spring Boot 应用中轻松地操作 Redis。以下是如何整合 Redis 到 Spring Boot 应用的基本步骤&#xff1a; 1. 添加依赖 首先&#xff0c;在你的 pom.xml 文件中添加 …...

微服务(基础篇-006-Docker安装-CentOS7)

目录 05-初识Docker-Docker的安装_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1LQ4y127n4?p46&spm_id_frompageDriver&vd_source60a35a11f813c6dff0b76089e5e138cc 0.安装Docker 1.CentOS安装Docker 1.1.卸载&#xff08;可选&#xff09; 1.2.安装dock…...

前端-css-01

1.CSS 长度单位和颜色设置 1.1CSS 中的长度单位 px 像素 em 字体大小的倍数&#xff08;字体默认是16px&#xff09; % 百分比 1.2CSS 中的颜色设置方式 1.2.1使用颜色名表示颜色 red、orange、yellow、green、cyan、blue、purple、pink、deeppink、skyblue、greenyellow .…...

Java学习36-Java 多线程安全:懒汉式和饿汉式

JAVA种有两种保证线程安全的方式&#xff0c;分别叫懒汉式Lazy Initialization和饿汉式Eager Initialization&#xff0c;以下是他们的区别&#xff1a; 线程安全性&#xff1a; 懒汉式本身是非线程安全的&#xff0c;因为多个线程可能同时检查实例是否为null&#xff0c;并尝…...

sql常用之CASE WHEN THEN

sql常用之CASE WHEN THEN SQL中的 CASE 类似编程语言里的 if-then-else 语句&#xff0c;用做逻辑判断。可以用于SELECT语句中&#xff0c;也可以用在WHERE&#xff0c;GROUP BY 和 ORDER BY 子句&#xff1b;可以单独使用&#xff0c;也可以和聚合函数结合使用。 语法&#…...

【PduR路由】IPduM模块详细介绍

目录 1.IpduM功能简介 2.IpduM模块依赖的其他模块 2.1RTE (BSW Scheduler) 2.2PDU Router 2.3COM 3.IpduM功能详解 3.1 功能概述 3.2 I-PDU多路复用I-PDU Multiplexing 3.2.1 Definitions and Layout 3.2.2通用功能描述 General 3.2.3模块初始化 Initialization 3.…...

【MySQL】6.MySQL主从复制和读写分离

主从复制 主从复制与读写分离 通常数据库的读/写都在同一个数据库服务器中进行&#xff1b; 但这样在安全性、高可用性和高并发等各个方面无法满足生产环境的实际需求&#xff1b; 因此&#xff0c;通过主从复制的方式同步数据&#xff0c;再通过读写分离提升数据库的并发负载…...

Lucene及概念介绍

Lucene及概念介绍 基础概念倒排索引索引合并分析查询语句的构成 基础概念 Document&#xff1a;我们一次查询或更新的载体&#xff0c;对比于实体类 Field&#xff1a;字段&#xff0c;是key-value格式的数据&#xff0c;对比实体类的字段 Item&#xff1a;一个单词&#xff0…...

密码算法概论

基本概念 什么是密码学&#xff1f; 简单来说&#xff0c;密码学就是研究编制密码和破译密码的技术科学 例题&#xff1a; 密码学的三个阶段 古代到1949年&#xff1a;具有艺术性的科学1949到1975年&#xff1a;IBM制定了加密标准DES1976至今&#xff1a;1976年开创了公钥密…...

实时数仓之实时数仓架构(Hudi)

目前比较流行的实时数仓架构有两类&#xff0c;其中一类是以FlinkDoris为核心的实时数仓架构方案&#xff1b;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对FlinkHudi湖仓一体架构进行介绍&#xff0c;这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数…...

2022-04-15_for循环等_作业

for循环 编写程序数一下 1到 100 的所有整数中出现多少个数字9计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值&#xff0c;打印出结果求10 个整数中最大值在屏幕上输出9*9乘法口诀表二分查找 编写程序数一下 1到 100 的所有整数中出现多少个数字9 #include <stdio.h>in…...

脑机辅助推导算法

目录 一&#xff0c;背景 二&#xff0c;华容道中道 1&#xff0c;问题 2&#xff0c;告诉脑机如何编码一个正方形格子 3&#xff0c;让脑机汇总信息 4&#xff0c;观察图&#xff0c;得到启发式算法 5&#xff0c;根据启发式算法求出具体解 6&#xff0c;可视化 一&am…...

【原创教程】三菱FX PLC控制FR-E740变频器

变频器的使用 1. 使用三菱FX PLC 控制变频器时,接线图请按下图所示接线。 各个端子的说明如下: R、S、T:变频器电源,E740变频器电源位3相380V。 STF:正转启动, STF信号ON时为正转、OFF时为停止指令。 STR :反转启动,STR信号ON时为反转、OFF时为停止指令。 RH、RM、RL…...

重读Java设计模式: 深入探讨建造者模式,构建复杂对象的优雅解决方案

引言 在软件开发中&#xff0c;有时需要构建具有复杂结构的对象&#xff0c;如果直接使用构造函数或者 setter 方法逐个设置对象的属性&#xff0c;会导致代码变得冗长、难以维护&#xff0c;并且容易出错。为了解决这个问题&#xff0c;我们可以使用建造者模式。 一、建造者…...

C语言数据结构易错知识点(6)(快速排序、归并排序、计数排序)

快速排序属于交换排序&#xff0c;交换排序还有冒泡排序&#xff0c;这个太简单了&#xff0c;这里就不再讲解。 归并排序和快速排序都是采用分治法实现的排序&#xff0c;理解它们对分支思想的感悟会更深。 计数排序属于非比较排序&#xff0c;在数据集中的情况下可以考虑使…...

使用 React Router v6.22 进行导航

使用 React Router v6.22 进行导航 React Router v6.22 是 React 应用程序中最常用的路由库之一&#xff0c;提供了强大的导航功能。本文将介绍如何在 React 应用程序中使用 React Router v6.22 进行导航。 安装 React Router 首先&#xff0c;我们需要安装 React Router v6…...

单链表的插入和删除

一、插入操作 按位序插入&#xff08;带头结点&#xff09;&#xff1a; ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。 typedef struct LNode{ElemType data;struct LNode *next; }LNode,*LinkList;//在第i 个位置插插入元素e (带头结点) bool Li…...

全量知识系统 之“程序”详细设计 之 “絮”---开端“元素周期表”表示的一个“打地鼠”游戏

全量知识系统 之“程序”详细设计 概述-概要和纪要 序 絮&#xff08;一个极简的开场白--“全量知识系统”自我介绍&#xff09; 将整个“人生”的三个阶段 比作“幼稚园”三班 &#xff1a; 第一步【想】-- “感性”思维游戏&#xff1a;打地鼠 。学前教育-新生期&#x…...

【详细讲解WebView的使用与后退键处理】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...