认识什么是Webpack
目录
1. 认识Webpack
1.1. 什么是Webpack?(定义)
1.2. 使用Webpack
1.2.1. 需求
1.2.2. 步骤
1.3. 入口和出口默认值
1.3.1. 需求代码如下
2. 修改Webpack打包入口和出口
2.1. 步骤:
2.2. 注意
3. Webpack自动生成html文件
3.1. 插件 html-webpack-plugin
3.2. 步骤
4. Webpack打包css代码
4.1. 加载器 css-loader
4.2. 加载器 style-loader
4.3. 步骤
1. 认识Webpack
1.1. 什么是Webpack?(定义)

静态模块:指的是编写代码过程中的,html,css,js,图片等固定内容的文件
打包:把静态模块内容,压缩,整合,转译等(前端工程化)
把 less / sass 转成 css 代码
把 ES6+ 降级成 ES5
支持多种模块标准语法

1.2. 使用Webpack
1.2.1. 需求
- 封装 utils 包,校验手机号长度和验证码长度,在 src/index.js 中使用并打包观察
1.2.2. 步骤

- 新建并初始化项目,编写业务源代码
- 下载 webpack webpack-cli 到当前项目中(版本独立)
npm i webpack webpack-cli --save
- 配置局部自定义命令

- 运行打包命令,自动产生 dist 分发文件夹(压缩和优化后,用于最终运行的代码)
npm run build

1.3. 入口和出口默认值
- 入口的默认值是'./src/index.js'
- 出口的默认值是'./dist/main.js'
1.3.1. 需求代码如下

// 封装校验手机号长度和校验验证码长度的函数
export const checkPhone = phone => phone.length === 11
export const checkCode = code => code.length === 6
/*** 目标1:体验 webpack 打包过程*/
// 1.1 准备项目和源代码
import { checkPhone, checkCode } from './utils/check.js'
console.log(checkPhone('13900002020'))
console.log(checkCode('123123123123'))
// 1.2 准备 webpack 打包的环境
// 1.3 运行自定义命令打包观察效果(npm run 自定义命令)
{"name": "test01","version": "1.0.0","description": "","main": "index.js","scripts": {"test": "echo \"Error: no test specified\" && exit 1","build": "webpack"},"keywords": [],"author": "","license": "ISC","devDependencies": {"webpack": "^5.91.0","webpack-cli": "^5.1.4"}
}


2. 修改Webpack打包入口和出口
2.1. 步骤:
- 项目根目录,新建 webpack.config.js 配置文件
- 导出配置对象,配置入口,出口文件的路径
- 重新打包观察

2.2. 注意
- 只有和入口产生直接/间接的引入关系,才会被打包
在出口output对象里面添加属性——clean: true //生成打包后内容之前,清空输出目录
3. Webpack自动生成html文件
3.1. 插件 html-webpack-plugin
- 在 Webpack 打包时生成 html 文件
3.2. 步骤
- 下载 html-webpack-plugin 本地软件包
npm i html-webpack-plugin --save-dev
- 配置 webpack.config.js 让 Webpack 拥有插件功能

- 重新打包观察效果
4. Webpack打包css代码
注意:
Webpack 默认只识别 js 代码
把css文件要跟入口文件产生引入关系
4.1. 加载器 css-loader
- 解析 css 代码
4.2. 加载器 style-loader
- 把解析后的 css 代码插入到 DOM
4.3. 步骤
- 准备 css 文件代码引入到 src/login/index.js 中(压缩转译处理等)
- 下载 css-loader 和 style-loader 本地软件包
npm i css-loader style-loader --save-dev
- 配置 webpack.config.js 让 Webpack 拥有该加载器功能

- 打包后观察效果
相关文章:
认识什么是Webpack
目录 1. 认识Webpack 1.1. 什么是Webpack?(定义) 1.2. 使用Webpack 1.2.1. 需求 1.2.2. 步骤 1.3. 入口和出口默认值 1.3.1. 需求代码如下 2. 修改Webpack打包入口和出口 2.1. 步骤: 2.2. 注意 3. Webpack自动生成html文件 3.1.…...
vulhub打靶记录——healthcare
文章目录 主机发现端口扫描FTP—21search ProPFTd EXPFTP 匿名用户登录 web服务—80目录扫描search openemr exp登录openEMR 后台 提权总结 主机发现 使用nmap扫描局域网内存活的主机,命令如下: netdiscover -i eth0 -r 192.168.151.0/24192.168.151.1…...
css实现更改checkbox的样式;更改checkbox选中后的背景色;更改checkbox选中后的icon
<input class"check-input" type"checkbox"> .check-input {width: 16px;height: 16px;} /* 设置默认的checkbox样式 */input.check-input[type"checkbox"] {-webkit-appearance: none; /* 移除默认样式 */border: 1px solid #999;outl…...
绿联 安装Mysql数据库
绿联 安装Mysql数据库 1、镜像 mysql:5.7 数据库5.7.x系列。 mysql:8 数据库8.x.x系列,安装方式相同。 2、安装 2.1、拉取镜像 拉取5.7.x版本的镜像。 2.2、基础设置 重启策略:第三或第四项均可。 2.3、网络 桥接即可。 2.4、命令 在原有的“mys…...
PyQt ui2py 使用PowerShell将ui文件转为py文件并且将导入模块PyQt或PySide转换为qtpy模块开箱即用
前言 由于需要使用不同的qt环境(PySide,PyQt)所以写了这个脚本,使用找到的随便一个uic命令去转换ui文件,然后将导入模块换成qtpy这个通用库(支持pyside2-6,pyqt5-6),老版本的是Qt.py(支持pysid…...
javascript中的浅拷贝和深拷贝
浅拷贝:拷贝的是引用类型数据的第一层:数组或者对象:的地址 深拷贝:通过不断的递归进行拷贝 原理普及:在js中引用类型的变量储存的时候引用类型数据的地址,因此当地址被重新赋值新的对象的时候ÿ…...
vue 实现自定义分页打印 window.print
首先这里是我自定义了打印界面才实现的效果,如果不用自定义界面实现,应该是一样的吧。具体可能需要自己去试试看 我的需求是界面有两个表格,点击全部打印,我需要把第一表格在打印是第1页,第二个表格是第二页 如图&…...
基于 Erlang 的随机账户分配机制
当你在网上注册新账户时,平台如何为你生成一个独特的用户名或编号呢?这背后其实有一套精心设计的系统。本文将带你了解一种使用 Erlang 语言开发的随机账户分配系统,它既快速又可靠。 ## 随机分配的简单步骤 我们可以将这个过程想象成一个装…...
数码论坛系统的设计与实现|Springboot+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)电子科技数码爱好者交流信息新闻畅聊讨论评价
本项目包含可运行源码数据库LW,文末可获取本项目的所有资料。 推荐阅读300套最新项目持续更新中..... 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含ja…...
时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测
时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSTM【24年新算法】…...
探索设计模式的魅力:AI大模型如何赋能C/S模式,开创服务新纪元
🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》 💪🏻 制定明确可量化的目标,坚持默默的做事。 AI大模型如何赋能C/S模式,开创服务新纪元 数字化飞速发展的时代,AI大模型…...
2024年NAND价格市场继续上涨
TrendForce发布了最新的NAND闪存市场价格走势预测。根据其报告,在2024年第二季度,NAND闪存合同价格将进一步呈现两位数的增长,叠加前一季度的增长。不过,客户端SSD的价格涨幅预计在第二季度将不超过15%,相比于2024年第…...
分布式算法 - ZAB算法
ZAB算法是用于实现分布式系统中的原子广播的核心算法,它被广泛应用于ZooKeeper分布式协调服务中。 ZAB算法由两个主要阶段组成:崩溃恢复阶段和消息广播阶段。 在崩溃恢复阶段,当一个ZooKeeper节点启动或者领导者节点崩溃重启时,…...
Java设计之道:色即是空,空即是色
0.引子 我们的这个世界上,存在这么一种东西: 第一:它不占据任何3D之体积,即它没有Volume第二:它也不占据任何2D之面积,即它没有Area第三:它也不占据任何1D之长度,即它没有Length 总…...
深度学习:基于PyTorch的模型解释工具Captum
深度学习:基于PyTorch的模型解释工具Captum 引言简介示例安装解释模型的预测解释文本模型情绪分析问答 解释视觉模型特征分析特征消融鲁棒性 解释多模态模型 引言 当我们训练神经网络模型时,我们通常只关注模型的整体性能,例如准确率或损失函…...
公司官网怎么才会被百度收录
在互联网时代,公司官网是企业展示自身形象、产品与服务的重要窗口。然而,即使拥有精美的官网,如果不被搜索引擎收录,就无法被用户发现。本文将介绍公司官网如何被百度收录的一些方法和步骤。 1. 创建和提交网站地图 创建网站地图…...
机器学习模型——SVM(支持向量机)
基本概念: Support Vector Machine (支持向量机): 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点。 机:一个算法 SVM是基于统计学习理论的一种机器学习方法。简单地说,就是将数据单元…...
服务器CPU使用过高的原因
大多使用服务器的站长都会碰见这样的问题,在长时间使用后,系统越来越慢,甚至出现卡死或强制重启的情况。打开后台 才发现,CPU使用率已经快要到达90%。那么,我告诉你哪些因素会导致服务器CPU高使用率,从而严…...
基于tensorflow和kereas的孪生网络推理图片相似性
一、环境搭建 基础环境:cuda 11.2 python3.8.13 linux ubuntu18.04 pip install tensorflow-gpu2.11.0 验证:# 查看tensorflow版本 import tensorflow as tf tf.__version__ # 是否能够成功启动GPU from tensorflow.python.client import device_lib pr…...
day4|gin的中间件和路由分组
中间件其实是一个方法, 在.use就可以调用中间件函数 r : gin.Default()v1 : r.Group("v1")//v1 : r.Group("v1").Use()v1.GET("test", func(c *gin.Context) {fmt.Println("get into the test")c.JSON(200, gin.H{"…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
