力扣贪心算法--第一天
前言
今天是贪心算法的第一天,算法之路重新开始!
内容
之前没了解过贪心算法。
什么是贪心
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。难点就是如何通过局部最优,推出整体最优。
一、455.分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i
,都有一个胃口值 g[i]
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j
,都有一个尺寸 s[j]
。如果 s[j] >= g[i]
,我们可以将这个饼干 j
分配给孩子 i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
思路:
大饼干可以满足胃口大的,也可以满足胃口小的,应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,全局最优就是喂饱尽可能多的小孩。
先将饼干数组和小孩数组排序,然后从后向前遍历小孩数组,如果饼干的大小大于或等于孩子的为空则给与,否则不给予,继续寻找选一个饼干是否符合。
func findContentChildren(g []int, s []int) int {sort.Ints(g)sort.Ints(s)child:=0for sIdx:=0;sIdx<len(s)&&child<len(g);sIdx++{if s[sIdx]>=g[child]{child++}}return child
}
二、376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
思路:
将数组用坡度表示出来,
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
func wiggleMaxLength(nums []int) int {n:=len(nums)if n<2{return n}ans:=1preDiff:=nums[1]-nums[0]if preDiff!=0{ans=2}for i:=2;i<n;i++{diff:=nums[i]-nums[i-1]if preDiff<=0&&diff>0||preDiff>=0&&diff<0{ans++preDiff=diff}}return ans
}
三、53. 最大子数组和
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组是数组中的一个连续部分。
思路:
负数只会拉低总和。
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
func maxSubArray(nums []int) int {maxNum:=nums[0]for i:=1;i<len(nums);i++{if nums[i]+nums[i-1]>nums[i]{nums[i]+=nums[i-1]}if nums[i]>maxNum{maxNum=nums[i]}}return maxNum
}
最后
可预见的正在变好!加油!
相关文章:
力扣贪心算法--第一天
前言 今天是贪心算法的第一天,算法之路重新开始! 内容 之前没了解过贪心算法。 什么是贪心 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。难点就是如何通过局部最优,推出整体最优。 一、455.分发饼干 假设你是一…...

Nginx反向代理和缓存
一、Nginx反向代理 1.调度和代理的区别: 1.调度基于内核层面,代理基于应用层面 2.代理必须实现一手托两家 3.调度不需要监听任何端口,不需要工作任何应用程序,代理需要工作和上游服务器一模一样的进程 4.调度没有并发上限&am…...

支持多元AI场景应用,宁畅“NEX AI Lab”开放试用预约中
3月29日,宁畅在京举行发布会,正式发布“全局智算”战略,并在会上推出战略性新品“AI算力栈”,旨在有效解决大模型产业落地的全周期问题。 据宁畅CTO赵雷介绍,“AI算力栈”集成了宁畅在AI计算领域的软硬件能力ÿ…...

Git 如何合并多个连续的提交
我平常的编程喜欢是写一段代码就提交一次,本地一般不攒代码,生怕本地有什么闪失导致白干。但这样就又导致一个问题:查看历史日志时十分不方便,随便找一段提交可以看到: > git log --oneline 8f06be5 add 12/qemu-h…...

k8s 基础入门
1.namespace k8s中的namespace和docker中namespace是两码事,可以理解为k8s中的namespace是为了多租户,dockers中的namespace是为了网络、资源等隔离 2.deployment kubectl create #新建 kubectl aply #新建 更新 升级: 滚动升级&#x…...

【Python项目】AI动物识别工具
目录 背景 技术简介 系统简介 界面预览 背景 成像技术在全球科技发展中扮演了关键角色。在科学研究领域,拍摄所得的图像成为了一种不可或缺的研究工具。特别是在生态学与动物学研究中,鉴于地球的广阔地域和多样的气候条件,利用图像技术捕…...
逻辑回归(Logistic Regression)详解
逻辑回归是一种用于解决二分类问题的统计方法,它通过构建一个模型来预测某个事件的概率。 以下是逻辑回归的一些关键要点: 适用场景:逻辑回归特别适合于处理二分类问题,即两个类别的分类问题,例如判断一封邮件是否为…...
.vimrc文件的语句语法
本文结构: a、简介 b、详细解释其中的一些常见语句和语法。 a、.vimrc 文件是 Vim 编辑器用于配置用户设置和自定义行为的文件。当 Vim 启动时,它会读取 .vimrc 文件中的命令和设置,并根据这些指令来配置编辑器的行为。 b、.vimrc 文件中…...
c语言之函数指针作形参
在一些c语言的大工程中,会在定义的函数中,把一些其他函数指针作为本函数形参。 函数指针作形参的例子 代码如下: #include<stdio.h> int max(int a,int b) { return(a>b?a:b); } int min(int a,int b) { return(a<b?a:b); } i…...
python文件的读取操作
打开文件 fopen("F:/python/helloworld/测试.txt","r",encoding"UTF-8")读取文件 print(f"读取10个字节的结果{f.read(10)}") print(f"读取全部字节的结果{f.read()}") linesf.readlines() print(f"{lines}")读…...

查看并设定【网络适配器】的优先级(跃点数)
目录 前言: 1.查看所有的适配器 2.修改优先级(需要以管理员身份运行) 跃点数(InterfaceMetric ) DHCP 3.修改后的效果 pwoerShell 再次运行之前的程序 4.其他 参考 网络适配器1,8相关知识介绍1 …...

深入理解 Hadoop 上的 Hive 查询执行流程
在 Hadoop 生态系统中,Hive 是一个重要的分支,它构建在 Hadoop 之上,提供了一个开源的数据仓库系统。它的主要功能是查询和分析存储在 Hadoop 文件中的大型数据集,包括结构化和半结构化数据。Hive 在数据查询、分析和汇总方面发挥…...

JS封装网页进入/退出全屏功能,兼容各大主流浏览器
1、演示 2、封装进入全屏函数 mozRequestFullScreen:兼容Firefox webkitRequestFullscreen:兼容 Chrome、Safari、Opera msRequestFullscreen:兼容:IE/Edge const enter () > {const element document.documentElementif (el…...
el-table的复选框勾选整行变色
要实现el-table的复选框勾选整行变色,你可以使用element-ui提供的row-class-name属性结合scoped slot来完成。 首先,你需要为el-table组件添加 row-class-name 属性,并给它绑定一个方法。在这个方法中,你可以根据你的业务逻辑来判…...
一步一步写线程之八线程池的完善之二数据结构封装
一、数据容器 在前面分析过,不管是线程任务的封装还是同步数据队列的封装,都是需要一个数据结构的。一用来说,如果没有什么特殊的原因,开发者都是使用STL中数据结构。比如前面经常见到的std::queue,std::deque,std::vector,std::…...

go连接数据库(原生)
根据官网文档 Go Wiki: SQL Database Drivers - The Go Programming Language 可以看到go可以连接的关系型数据库 常用的关系型数据库基本上都支持,下面以mysql为例 下载mysql驱动 打开上面的mysql链接 GitHub - go-sql-driver/mysql: Go MySQL Driver i…...

【C语言】2048小游戏【附源码】
欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 一、游戏描述: 2048是一款数字益智类游戏,玩家需要使用键盘控制数字方块的移动,合并相同数字的方块,最终达到数字方块上出现“2048”的目标。 每次移动操作,所…...

部署项目遇到的各种问题总结
文章目录 前言一、后端问题 jar包运行出现错误宝塔面板使用jdk17二、数据库问题 版本问题三、前端问题 连不上后端总结 前言 在做完项目之后,为了让别人访问到自己的网站,就需要部署前端后端以及数据库,但是在部署的过程中出现了各种问题和困…...

JavaSE:抽象类和接口
目录 一、前言 二、抽象类 (一)抽象类概念 (二)使用抽象类的注意事项 (三)抽象类的作用 三、接口 (一)接口概念 (二)接口语法规则 (三&a…...

发票是扫码验真好,还是OCR后进行验真好?
随着科技的进步,电子发票的普及使得发票的验真方式也在不断演进。目前,我们常见的发票验真方式主要有两种:一种是扫描发票上的二维码进行验真,另一种是通过OCR(Optical Character Recognition,光学字符识别…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

算术操作符与类型转换:从基础到精通
目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...
当下AI智能硬件方案浅谈
背景: 现在大模型出来以后,打破了常规的机械式的对话,人机对话变得更聪明一点。 对话用到的技术主要是实时音视频,简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术,开发自己的大模型。商用方案多见为字节、百…...