当前位置: 首页 > news >正文

Scala第十九章节(Actor的相关概述、Actor发送和接收消息以及WordCount案例)

Scala第十九章节

章节目标

  1. 了解Actor的相关概述
  2. 掌握Actor发送和接收消息
  3. 掌握WordCount案例

1. Actor介绍

Scala中的Actor并发编程模型可以用来开发比Java线程效率更高的并发程序。我们学习Scala Actor的目的主要是为后续学习Akka做准备。

1.1 Java并发编程的问题

在Java并发编程中,每个对象都有一个逻辑监视器(monitor),可以用来控制对象的多线程访问。我们添加sychronized关键字来标记,需要进行同步加锁访问。这样,通过加锁的机制来确保同一时间只有一个线程访问共享数据。但这种方式存在资源争夺、以及死锁问题,程序越大问题越麻烦。
在这里插入图片描述

线程死锁

在这里插入图片描述

1.2 Actor并发编程模型

Actor并发编程模型,是Scala提供给程序员的一种与Java并发编程完全不一样的并发编程模型,是一种基于事件模型的并发机制。Actor并发编程模型是一种不共享数据,依赖消息传递的一种并发编程模式,有效避免资源争夺、死锁等情况。

在这里插入图片描述

1.3 Java并发编程对比Actor并发编程
Java内置线程模型Scala Actor模型
"共享数据-锁"模型 (share data and lock)share nothing
每个object有一个monitor,监视线程对共享数据的访问不共享数据,Actor之间通过Message通讯
加锁代码使用synchronized标识
死锁问题
每个线程内部是顺序执行的每个Actor内部是顺序执行的

注意:

  1. scala在2.11.x版本中加入了Akka并发编程框架,老版本已经废弃。

  2. Actor的编程模型和Akka很像,我们这里学习Actor的目的是为学习Akka做准备。

2. 创建Actor

我们可以通过类(class)或者单例对象(object), 继承Actor特质的方式, 来创建Actor对象.

2.1 步骤
  1. 定义class或object继承Actor特质
  2. 重写act方法
  3. 调用Actor的start方法执行Actor

注意: 每个Actor是并行执行的, 互不干扰.

2.2 案例一: 通过class实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用class继承Actor实现.(如果需要在程序中创建多个相同的Actor)

参考代码

import scala.actors.Actor//案例:Actor并发编程入门, 通过class创建Actor
object ClassDemo01 {//需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20//1. 创建Actor1, 用来打印1~10的数字.class Actor1 extends Actor {override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)}//2. 创建Actor2, 用来打印11~20的数字.class Actor2 extends Actor {override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)}def main(args: Array[String]): Unit = {//3. 启动两个Actor.new Actor1().start()new Actor2().start()}
}
2.3 案例二: 通过object实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用object继承Actor实现.(如果在程序中只创建一个Actor)

参考代码

import scala.actors.Actor//案例:Actor并发编程入门, 通过object创建Actor
object ClassDemo02 {//需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20//1. 创建Actor1, 用来打印1~10的数字.object Actor1 extends Actor {override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)}//2. 创建Actor2, 用来打印11~20的数字.object Actor2 extends Actor {override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)}def main(args: Array[String]): Unit = {//3. 启动两个Actor.Actor1.start()Actor2.start()}
}
2.4 Actor程序运行流程
  1. 调用start()方法启动Actor
  2. 自动执行act()方法
  3. 向Actor发送消息
  4. act方法执行完成后,程序会调用**exit()**方法结束程序执行.

3. 发送消息/接收消息

我们之前介绍Actor的时候,说过Actor是基于事件(消息)的并发编程模型,那么Actor是如何发送消息和接收消息的呢?

3.1 使用方式
3.1.1 发送消息

我们可以使用三种方式来发送消息:

发送异步消息,没有返回值
!?发送同步消息,等待返回值
!!发送异步消息,返回值是Future[Any]

例如:要给actor1发送一个异步字符串消息,使用以下代码:

actor1 ! "你好!"
3.1.2 接收消息

Actor中使用receive方法来接收消息,需要给receive方法传入一个偏函数

{case 变量名1:消息类型1 => 业务处理1case 变量名2:消息类型2 => 业务处理2...
}

注意: receive方法只接收一次消息,接收完后继续执行act方法

3.2 案例一: 发送及接收一句话

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver接收到该消息后,打印出来

在这里插入图片描述

参考代码

//案例: 采用 异步无返回的形式, 发送消息.
object ClassDemo03 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//发送第二句话ActorReceiver ! "你叫什么名字呀? "}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息.receive {case x: String => println(x)}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.3 案例二: 持续发送和接收消息

如果我们想实现ActorSender一直发送消息, ActorReceiver能够一直接收消息,该怎么实现呢?

答: 我们只需要使用一个while(true)循环,不停地调用receive来接收消息就可以啦。

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

参考代码

//案例:Actor 持续发送和接收消息.
object ClassDemo04 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {while(true) {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//休眠3秒.TimeUnit.SECONDS.sleep(3)       //单位是: 秒}}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息,  持续接收.while(true) {receive {case x: String => println(x)}}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.4 案例三: 优化持续接收消息

上述代码,是用while循环来不断接收消息的, 这样做可能会遇到如下问题:

  • 如果当前Actor没有接收到消息,线程就会处于阻塞状态
  • 如果有很多的Actor,就有可能会导致很多线程都是处于阻塞状态
  • 每次有新的消息来时,重新创建线程来处理
  • 频繁的线程创建、销毁和切换,会影响运行效率

针对上述情况, 我们可以使用loop(), 结合react()来复用线程, 这种方式比while循环 + receive()更高效.

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

注意: 使用loop + react重写上述案例.

参考代码

//案例: 使用loop + react循环接收消息.
object ClassDemo05 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {while(true) {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//休眠3秒.TimeUnit.SECONDS.sleep(3)       //单位是: 秒}}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息,  持续接收.loop{react {case x: String => println(x)}}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.5 案例四: 发送和接收自定义消息

我们前面发送的消息都是字符串类型,Actor中也支持发送自定义消息,例如:使用样例类封装消息,然后进行发送处理。

3.5.1 示例一: 发送同步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个同步消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!?来发送同步消息
  • 在Actor的act方法中,可以使用sender获取发送者的Actor引用

参考代码

//案例: Actor发送和接收自定义消息, 采用 同步有返回的形式
object ClassDemo06 {//1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)case class Message(id: Int, message: String) //自定义的发送消息 样例类case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")//2.2 给MainActor回复一条消息.//sender: 获取消息发送方的Actor对象sender ! ReplyMessage("我很不好, 熏死了!...", "车磊")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !?  同步有返回.val reply:Any = MsgActor !? Message(1, "你好啊, 我是MainActor, 我在给你发消息!")//resutl表示最终接收到的 返回消息.val result = reply.asInstanceOf[ReplyMessage]//5. 输出结果.println(result)}
}
3.5.2 示例二: 发送异步无返回消息

需求

创建一个MsgActor,并向它发送一个异步无返回消息,该消息包含两个字段(id, message)

注意: 使用!发送异步无返回消息

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步 无返回的形式
object ClassDemo07 {//1. 定义一个样例类Message(表示发送数据)case class Message(id: Int, message: String) //自定义的发送消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并打印.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !  异步无返回MsgActor ! Message(1, "我是采用 异步无返回 的形式发送消息!")}
}
3.5.3 示例三: 发送异步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个异步有返回消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!!发送异步有返回消息
  • 发送后,返回类型为Future[Any]的对象
  • Future表示异步返回数据的封装,虽获取到Future的返回值,但不一定有值,可能在将来某一时刻才会返回消息
  • Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据

图解

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步有返回的形式
object ClassDemo08 {//1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)case class Message(id: Int, message: String) //自定义的发送消息 样例类case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")//2.2 给MainActor回复一条消息.//sender: 获取消息发送方的Actor对象sender ! ReplyMessage("我很不好, 熏死了!...", "糖糖")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !!  异步有返回.val future: Future[Any] = MsgActor !! Message(1, "你好啊, 我是MainActor, 我在给你发消息!")//5. 因为future中不一定会立马有数据, 所以我们要校验.//Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据//!future.isSet表示: 没有接收到具体的返回消息, 就一直死循环.while(!future.isSet){}//通过Future的apply()方法来获取返回的数据.val result = future.apply().asInstanceOf[ReplyMessage]//5. 输出结果.println(result)}
}

4. 案例: WordCount

4.1 需求

接下来,我们要使用Actor并发编程模型实现多文件的单词统计

案例介绍

给定几个文本文件(文本文件都是以空格分隔的),使用Actor并发编程来统计单词的数量.

思路分析
在这里插入图片描述

实现思路

  1. MainActor获取要进行单词统计的文件
  2. 根据文件数量创建对应的WordCountActor
  3. 将文件名封装为消息发送给WordCountActor
  4. WordCountActor接收消息,并统计单个文件的单词计数
  5. 将单词计数结果发送给MainActor
  6. MainActor等待所有的WordCountActor都已经成功返回消息,然后进行结果合并
4.2 步骤一: 获取文件列表

实现思路

  1. 在当前项目下的data文件夹下有: 1.txt, 2.txt两个文本文件, 具体存储内容如下:

    1.txt文本文件存储内容如下:

    hadoop sqoop hadoop
    hadoop hadoop flume
    hadoop hadoop hadoop
    spark
    

    2.txt文本文件存储内容如下:

    flink hadoop hive
    hadoop sqoop hadoop
    hadoop hadoop hadoop
    spark
    
  2. 获取上述两个文本文件的路径, 并将结果打印到控制台上.

参考代码

object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)}
}
4.3 步骤二: 创建WordCountActor

实现思路

  1. 根据文件数量创建对应个数的WordCountActor对象.
  2. 为了方便后续发送消息给Actor,将每个Actor与文件名关联在一起

实现步骤

  1. 创建WordCountActor
  2. 将文件列表转换为WordCountActor
  3. 为了后续方便发送消息给Actor,将Actor列表和文件列表拉链到一起
  4. 打印测试

参考代码

  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {override def act(): Unit = { }
    }
  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)}
    }
    
4.4 步骤三: 启动Actor/发送/接收任务消息

实现思路

启动所有WordCountActor对象,并发送单词统计任务消息给每个WordCountActor对象.

注意: 此处应发送异步有返回消息

实现步骤

  1. 创建一个WordCountTask样例类消息,封装要进行单词计数的文件名
  2. 启动所有WordCountActor,并发送异步有返回消息
  3. 获取到所有的WordCountActor中返回的消息(封装到一个Future列表中)
  4. 在WordCountActor中接收并打印消息

参考代码

  • MessagePackage.scala文件中的代码

    /*** 表示: MainActor 给每一个WordCountActor发送任务的 格式.* @param fileName 具体的要统计的 文件路径.*/
    case class WordCountTask(fileName:String)
    
  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)//3. 启动WordCountActor, 并给每一个WordCountActor发送任务./*Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)*/val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt//3.1 获取具体的要启动的WordCountActor对象.val actor = keyVal._1 //actor: WordCountActor//3.2 启动具体的WordCountActor.actor.start()//3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.val future: Future[Any] = actor !! WordCountTask(keyVal._2)future      //记录的是某一个WordCountActor返回的统计结果.}}
    }
    
  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {override def act(): Unit = { loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")}}}
    }
    
4.5 步骤四: 统计文件单词计数

实现思路

读取文件文本,并统计出来单词的数量。例如:

(hadoop, 3), (spark, 1)...

实现步骤

  1. 读取文件内容,并转换为列表
  2. 按照空格切割文本,并转换为一个一个的单词
  3. 为了方便进行计数,将单词转换为元组
  4. 按照单词进行分组,然后再进行聚合统计
  5. 打印聚合统计结果

参考代码

  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {override def act(): Unit = {//采用loop + react 方式接收数据.loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")//4. 统计接收到的文件中的每个单词的数量.//4.1 获取指定文件中的所有的文件. List("hadoop sqoop hadoop","hadoop hadoop flume")val lineList = Source.fromFile(fileName).getLines().toList//4.2 将上述获取到的数据, 转换成一个一个的字符串.  //List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")val strList = lineList.flatMap(_.split(" "))//4.3 给每一个字符串后边都加上次数, 默认为1.             //List("hadoop"->1, "sqoop"->1, "hadoop"->1, "hadoop"->1, "flume"->1)val wordAndCount = strList.map(_ -> 1)//4.4 按照 字符串内容分组.                              //"hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)val groupMap = wordAndCount.groupBy(_._1)//4.5 对分组后的内容进行统计, 统计每个单词的总次数.    "hadoop" -> 2,   "sqoop" -> 1val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//4.6 打印统计后的结果. println(wordCountMap)}}}
    }
    
4.6 步骤五: 返回结果给MainActor

实现思路

  • 将单词计数的结果封装为一个样例类消息,并发送给MainActor
  • MainActor等待所有WordCountActor均已返回后,获取到每个WordCountActor单词计算后的结果

实现步骤

  1. 定义一个样例类封装单词计数结果
  2. 将单词计数结果发送给MainActor
  3. MainActor中检测所有WordCountActor是否均已返回,如果均已返回,则获取并转换结果
  4. 打印结果

参考代码

  • MessagePackage.scala文件中的代码

    /*** 表示: MainActor 给每一个WordCountActor发送任务的 格式.* @param fileName 具体的要统计的 文件路径.*/
    case class WordCountTask(fileName:String)/*** 每个WordCountActor统计完的返回结果的: 格式* @param wordCountMap  具体的返回结果, 例如:  Map("hadoop"->6, "sqoop"->1)*/
    case class WordCountResult(wordCountMap:Map[String, Int])
    
  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {override def act(): Unit = {//采用loop + react 方式接收数据.loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")//4. 统计接收到的文件中的每个单词的数量.//4.1 获取指定文件中的所有的文件.                       List("hadoop sqoop hadoop","hadoop hadoop flume")val lineList = Source.fromFile(fileName).getLines().toList//4.2 将上述获取到的数据, 转换成一个一个的字符串.        List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")val strList = lineList.flatMap(_.split(" "))//4.3 给每一个字符串后边都加上次数, 默认为1.             List("hadoop"->1, "sqoop"->1, "hadoop"->1,"hadoop"->1, "hadoop"->1, "flume"->1)val wordAndCount = strList.map(_ -> 1)//4.4 按照 字符串内容分组.                              "hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)val groupMap = wordAndCount.groupBy(_._1)//4.5 对分组后的内容进行统计, 统计每个单词的总次数.      "hadoop" -> 2,   "sqoop" -> 1val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//4.6 把统计后的结果返回给: MainActor.sender ! WordCountResult(wordCountMap)}}}
    }
    
4.7 步骤六: 结果合并

实现思路

对接收到的所有单词计数进行合并。

参考代码

  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)//3. 启动WordCountActor, 并给每一个WordCountActor发送任务./*Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)*/val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt//3.1 获取具体的要启动的WordCountActor对象.val actor = keyVal._1 //actor: WordCountActor//3.2 启动具体的WordCountActor.actor.start()//3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.val future: Future[Any] = actor !! WordCountTask(keyVal._2)future      //记录的是某一个WordCountActor返回的统计结果.}//5. MainActor对接收到的数据进行合并.//5.1 判断所有的future都有返回值后, 再往下执行.//       过滤没有返回值的future         不为0说明还有future没有收到值while(futureList.filter(!_.isSet).size != 0) {} //futureList:  future1, future2//5.2 从每一个future中获取数据.//wordCountMap:  List(Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1), Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1))val wordCountMap = futureList.map(_.apply().asInstanceOf[WordCountResult].wordCountMap)//5.3 对获取的数据进行flatten, groupBy, map, 然后统计.val result = wordCountMap.flatten.groupBy(_._1).map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//5.4 打印结果println(result)}
    }
    

相关文章:

Scala第十九章节(Actor的相关概述、Actor发送和接收消息以及WordCount案例)

Scala第十九章节 章节目标 了解Actor的相关概述掌握Actor发送和接收消息掌握WordCount案例 1. Actor介绍 Scala中的Actor并发编程模型可以用来开发比Java线程效率更高的并发程序。我们学习Scala Actor的目的主要是为后续学习Akka做准备。 1.1 Java并发编程的问题 在Java并…...

蓝桥杯杯赛之深度优先搜索优化《1.分成互质组》 《 2.小猫爬山》【dfs】【深度搜索剪枝优化】【搜索顺序】

文章目录 思想例题1. 分成互质组题目链接题目描述【解法一】【解法二】 2. 小猫爬山题目链接题目描述输入样例&#xff1a;输出样例&#xff1a;【思路】【WA代码】【AC代码】 思想 本质为两种搜索顺序&#xff1a; 枚举当前元素可以放入哪一组枚举每一组可以放入哪些元素 操…...

软件设计原则:依赖倒置

定义 依赖倒置原则&#xff08;Dependency Inversion Principle, DIP&#xff09;是面向对象设计原则之一&#xff0c;其核心是高层模块&#xff08;如业务逻辑&#xff09;不应当依赖于低层模块&#xff08;如具体的数据访问或设备控制实现&#xff09;&#xff0c;而是双方都…...

03-自媒体文章发布

自媒体文章发布 1)自媒体前后端搭建 1.1)后台搭建 ①&#xff1a;资料中找到heima-leadnews-wemedia.zip解压 拷贝到heima-leadnews-service工程下&#xff0c;并指定子模块 执行leadnews-wemedia.sql脚本 添加对应的nacos配置 spring:datasource:driver-class-name: com…...

Oracle中实现一次插入多条数据

一、需求描述 在我们实际的业务场景中&#xff0c;由于单条插入的效率很低&#xff08;每次都需要数据库资源连接关闭的开销&#xff09;&#xff0c;故需要实现一次性插入多条数据&#xff0c;用以提升数据插入的效率&#xff1b; 如下图是常见的单条插入数据&#xff1a; 二…...

【C++入门】关键字、命名空间以及输入输出

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…...

初识MySQL(中篇)

使用语言 MySQL 使用工具 Navicat Premium 16 代码能力快速提升小方法&#xff0c;看完代码自己敲一遍&#xff0c;十分有用 目录 1.SQL语言 1.1 SQL语言组成部分 2.MySQL数据类型 2.1 数值类型 2.2 字符串类型 2.3 日期类型 3.创建数据表 3.1 创建数据表方法1 …...

前端订阅后端推送WebSocket定时任务

0.需求 后端定时向前端看板推送数据&#xff0c;每10秒或者30秒推送一次。 1.前言知识 HTTP协议是一个应用层协议&#xff0c;它的特点是无状态、无连接和单向的。在HTTP协议中&#xff0c;客户端发起请求&#xff0c;服务器则对请求进行响应。这种请求-响应的模式意味着服务器…...

提高机器人系统稳定性:引入阻尼作为共振后的相位超前

在机器人关节中&#xff0c;引入阻尼作为共振后的相位超前&#xff0c;确实是一种提高系统稳定性的有效策略。机器人关节的振动和共振是影响其性能稳定性的关键因素&#xff0c;特别是在进行高速、高精度操作时。阻尼的引入能够显著减少这些不利因素&#xff0c;提升机器人的整…...

深度学习理论基础(三)封装数据集及手写数字识别

目录 前期准备一、制作数据集1. excel表格数据2. 代码 二、手写数字识别1. 下载数据集2. 搭建模型3. 训练网络4. 测试网络5. 保存训练模型6. 导入已经训练好的模型文件7. 完整代码 前期准备 必须使用 3 个 PyTorch 内置的实用工具&#xff08;utils&#xff09;&#xff1a; ⚫…...

vue3+eachrts饼图轮流切换显示高亮数据

<template><div class"charts-box"><div class"charts-instance" ref"chartRef"></div>// 自定义legend 样式<div class"charts-note"><span v-for"(items, index) in data.dataList" cla…...

UTONMOS:AI+Web3+元宇宙数字化“三位一体”将触发经济新爆点

人工智能、元宇宙、Web3&#xff0c;被称为数字化的“三位一体”&#xff0c;如何看待这三大技术所扮演的角色&#xff1f; 3月24日&#xff0c;2024全球开发者先锋大会“数字化的三位一体——人工智能、元宇宙、Web3.0”论坛在上海漕河泾开发区举行&#xff0c;首次提出&…...

开始焦虑了

大家好&#xff0c;我是洋子&#xff0c;25届的暑期实习自从3月份开始招聘有一段时间了&#xff0c;最近接到了几个25届同学的咨询&#xff0c;其中一个学妹印象比较深刻&#xff0c;她的情况如下 个人情况 学历是双非本&#xff0c;计算机专业&#xff0c;学习方向是Java&…...

数据结构和算法:十大排序

排序算法 排序算法用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用&#xff0c;因为有序数据通常能够被更高效地查找、分析和处理。 排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定&#xff0c;如数字大小、字符 ASCII…...

LLaMA-Factory微调(sft)ChatGLM3-6B保姆教程

LLaMA-Factory微调&#xff08;sft&#xff09;ChatGLM3-6B保姆教程 准备 1、下载 下载LLaMA-Factory下载ChatGLM3-6B下载ChatGLM3windows下载CUDA ToolKit 12.1 &#xff08;本人是在windows进行训练的&#xff0c;显卡GTX 1660 Ti&#xff09; CUDA安装完毕后&#xff0c…...

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理 Web服务组件分层概念 静态层 &#xff1a;web前端框架&#xff1a;Bootstrap&#xff0c;jQuery,HTML5框架等&#xff0c;主要存在跨站脚本攻击脚本层&#xff1a;web应用&#xff0c;web开发框架&#xff0c;web服务…...

蓝桥杯B组C++省赛——飞机降落(DFS)

题目连接&#xff1a;https://www.lanqiao.cn/problems/3511/learning/ 思路&#xff1a;由于数据范围很小&#xff0c;所有选择用DFS枚举所有飞机的所有的降落顺序&#xff0c;看哪个顺序可以让所有飞机顺利降落&#xff0c;有的话就算成功方案&#xff0c;输出了“YES”。 …...

Java 中的 Map集合

文章目录 添加和修改元素获取元素检查元素删除元素获取所有键 / 值 / 键值对大小 在 Java 中&#xff0c;Map 接口是 Java 集合框架的一部分&#xff0c;它存储键值对&#xff08;key-value pairs&#xff09;。Map 接口有许多常用的方法&#xff0c;用于添加、删除、获取元素&…...

基于springboot大学生兼职平台管理系统(完整源码+数据库)

一、项目简介 本项目是一套基于springboot大学生兼职平台管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功…...

C#学生信息管理系统

一、引言 学生信息管理系统是现代学校管理的重要组成部分&#xff0c;它能够有效地管理学生的基本信息、课程信息、成绩信息等&#xff0c;提高学校管理的效率和质量。本文将介绍如何使用SQL Server数据库和C#语言在.NET平台上开发一个学生信息管理系统的课程设计项目。 二、项…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...