当前位置: 首页 > news >正文

剑指 Offer 43. 1~n 整数中 1 出现的次数

摘要

剑指 Offer 43. 1~n 整数中 1 出现的次数

一、数学思维解析

将1~ n的个位、十位、百位、...的1出现次数相加,即为1出现的总次数。

设数字n是个x位数,记n的第i位为ni​,则可将n写为 nxnx−1⋯n2n1:

  • 称" ni" 为 当前位 ,记为 cur ,
  • 将" ni−1ni−2⋯n2n1​ " 称为 低位 ,记为low ;
  • 将" nxnx−1⋯ni+2ni+1​ " 称为高位 ,记为high 。
  • 将10i称为位因子 ,记为digit。

某位中1出现次数的计算方法:根据当前位 cur值的不同,分为以下三种情况:

当 cur=0时: 此位1的出现次数只由高位 high决定,计算公式为:high×digit:

 当cur=1时: 此位1的出现次数由高位high和低位low决定,计算公式为:high×digit+low+1

当cur=2,3,⋯ ,9时 此位1的出现次数只由高位 high决定,计算公式为:(high+1)×digit:

package Math;/*** @Classname JZ43整数中1出现的次数* @Description TODO* @Date 2023/3/7 20:55* @Created by xjl*/
public class JZ43整数中1出现的次数 {/*** @description 整数中1出现的次数 * @param: n* @date: 2023/3/7 20:56* @return: int* @author: xjl*/public int countDigitOne(int n) {int digit = 1, res = 0;int high = n / 10, cur = n % 10, low = 0;while (high != 0 || cur != 0) {if (cur == 0) {res += high * digit;} else if (cur == 1) {res += high * digit + low + 1;} else {res += (high + 1) * digit;}low += cur * digit;cur = high % 10;high /= 10;digit *= 10;}return res;}
}

复杂度分析

  • 时间复杂度O(log⁡n): 循环内的计算操作使用O(1)时间;循环次数为数字n的位数,即log⁡10n,因此循环使用O(log⁡n)时间。
  • 空间复杂度 O(1) : 几个变量使用常数大小的额外空间。

二、暴力解析

一般是超时的选择

    /*** @description 相当于的暴力求解的顺序* @param: n* @date: 2023/3/7 21:15* @return: int* @author: xjl*/public int countDigitOne2(int n) {String result = "";for (int i = 1; i <= n; i++) {result += String.valueOf(i);}int count = 0;for (int i = 0; i < result.length(); i++) {if (result.charAt(i) == '1') {count++;}}return count;}

复杂度分析

  • 时间复杂度O(n): 循环内的计算操作使用O(1)时间;循环次数为数字n的位数,即log⁡10n,因此循环使用O(log⁡n)时间。
  • 空间复杂度 O(n) : 几个变量使用常数大小的额外空间。

博文参考

《leetcode》

相关文章:

剑指 Offer 43. 1~n 整数中 1 出现的次数

摘要 剑指 Offer 43. 1&#xff5e;n 整数中 1 出现的次数 一、数学思维解析 将1~ n的个位、十位、百位、...的1出现次数相加&#xff0c;即为1出现的总次数。 设数字n是个x位数&#xff0c;记n的第i位为ni​&#xff0c;则可将n写为 nxnx−1⋯n2n1&#xff1a; 称" …...

如何成为程序员中的牛人/高手?

目录 一、牛人是怎么成为牛人的&#xff1f; 二、关于牛人的一点看法 三、让程序员与业务接壤&#xff0c;在开发团队中“升级” 四、使用低代码平台 目标效果 五、最后 祝伟大的程序员们梦想成真、码到成功&#xff01; 一、牛人是怎么成为牛人的&#xff1f; 最近在某…...

云原生时代顶流消息中间件Apache Pulsar部署实操之轻量级计算框架

文章目录Pulsar Functions(轻量级计算框架)基础定义工作流程函数运行时处理保证和订阅类型窗口函数定义窗口类型滚动窗口滑动窗口函数配置函数示例有状态函数示例窗口函数示例自定义函数开发定义原生语言接口示例Pulsar函数SDK示例Pulsar Functions(轻量级计算框架) 基础定义 …...

数据结构刷题(十九):77组合、216组合总和III

1.组合题目链接过程图&#xff1a;先从集合中取一个数&#xff0c;再依次从剩余数中取k-1个数。思路&#xff1a;回溯算法。使用回溯三部曲进行解题&#xff1a;递归函数的返回值以及参数&#xff1a;n&#xff0c;k&#xff0c;startIndex(记录每次循环集合从哪里开始遍历的位…...

PyQt 做美*女GIF设置桌面,每天都很爱~

人生苦短&#xff0c;我用python 要说程序员工作的最大压力不是来自于工作本身&#xff0c; 而是来自于需要不断学习才能更好地完成工作&#xff0c; 因为程序员工作中面对的编程语言是在不断更新的&#xff0c; 同时还要学习熟悉其他语言来提升竞争力… 好了&#xff0c;学习…...

[渗透测试笔记] 54.日薪2k的蓝队hw中级定级必备笔记系列篇3之域渗透黄金票据和白银票据

前文链接 [渗透测试笔记] 52.告别初级,日薪2k的蓝队hw中级定级必备笔记 [渗透测试笔记] 53.日薪2k的蓝队hw中级定级必备笔记2 文章目录 Kerberos认证协议NTLM认证协议Kerberos和NTLM比较黄金票据原理黄金票据条件复现过程白银票据原理白银票据条件复现过程黄金票据和白银票据…...

【异常】Spring Cloud Gateway网关自定义过滤器无法获取到请求体body的内容?不存在的!

一、需求说明 项目要使用到网关SpringCloud Gateway进行验签,现在定义了一个过滤器ValidateSignFilter, 我希望,所以过网关SpringCloud Gateway的请求,都能够校验一下请求头,看看是否有Sign这个字段放在请求头中。 二、异常说明 但是,我遇到了SpringCloud Gateway网关…...

CNN 卷积神经网络对染色血液细胞分类(blood-cells)

目录 1. 介绍 2. 加载数据 3. 可视化 3.1 显示单幅图像 3.2 显示多幅图像...

Kubernetes学习(三)Service

Service对象 为什么需要Service 每个Pod都有自己的IP地址&#xff0c;但是在Deployment中&#xff0c;在同一时刻运行的Pod集合可能与稍后运行该应用程序的Pod集合不同。 这就导致了一个问题&#xff1a;如果一组Pod&#xff08;称为后端&#xff09;为集群内其他Pod&#x…...

数学小课堂:古德-图灵折扣估计法和插值法(防范黑天鹅事件的方法)

文章目录 引言I 黑天鹅事件产生的原因1.1 置信度1.2 数据的稀疏性1.3 零概率问题II 防范黑天鹅事件的方法2.1 古德-图灵折扣估计法2.2 插值法引言 防范黑天鹅事件的方法 古德-图灵折扣估计法:它主要是解决零概率的事件古德的方法虽然解决了零概率的问题,但是依然没有解决数据…...

redis getshell方法

前言 参考文章 https://paper.seebug.org/1169 https://blog.csdn.net/weixin_55843787/article/details/123829606 https://blog.csdn.net/chenglanqi6606/article/details/100909518 Redis是什么 Redis是一款基于键值对的NoSQL数据库&#xff0c;它的值支持多种数据结构 …...

【ONE·C || 程序编译简述】

总言 C语言&#xff1a;程序编译相关。    文章目录总言1、程序的翻译环境和运行环境1.1、简述1.2、翻译环境&#xff1a;程序编译与链接1.2.1、简介&#xff1a;程序如何从.c文件形成.exe可执行程序1.2.2、过程说明1.3、运行环境2、预处理详解2.1、预定义符号2.2、#define2.…...

MGAT: Multimodal Graph Attention Network for Recommendation

模型总览如下&#xff1a; 图1&#xff1a;多模态图注意力网络背景&#xff1a;本论文是对MMGCN&#xff08;Wei et al., 2019&#xff09;的改进。MMGCN简单地在并行交互图上使用GNN&#xff0c;平等地对待从所有邻居传播的信息&#xff0c;无法自适应地捕获用户偏好。 MMGCN…...

在SNAP中用sentinel-1数据做InSAR测量,以门源地震为例

在SNAP中用sentinel-1数据做InSAR0 写在前面1 数据下载2 处理步骤2.1 split2.2 apply orbit 导入精密轨道2.3 查看数据的时空基线base line2.4 back-geocoding 配准2.5 Enhanced Spectral Diversity2.6 Deburst2.7 Interogram Formation 生成干涉图2.8 Multilook 多视2.9 Golds…...

MySQL常用函数

什么是函数&#xff1f; 函数是指一段可以直接被另一段程序调用的程序或代码。 字符串函数 函数功能CONCAT(S1,S2,…Sn)字符串拼接&#xff0c;将S1&#xff0c;S2&#xff0c;… Sn拼接成一个字符串LOWER(str)将字符串str全部转为小写LOWER(str)将字符串str全部转为小写LPAD(…...

51单片机数字电子钟开题报告

目录 选题背景 初步设计方案 芯片的选型 编译环境 关键问题 策略 方案 参考文献 选题背景 数字电子钟是一种受到越来越多人喜爱的钟表&#xff0c;其准确性和稳定性成为设计和研发的重要考虑因素。在现代社会&#xff0c;时间的准确性对于各行各业都非常重要&#xff0…...

day7 HTTP协议

HTTP协议 什么是协议&#xff1f; 协议实际上是某些人&#xff0c;或者某些组织提前制定好的一套规范&#xff0c;大家都按照这个规范来&#xff0c;这样可以做到沟通无障碍。协议就是一套规范&#xff0c;就是一套标准。由其他人或其他组织来负责制定的。我说的话你能听懂&…...

3DCAT+一汽奥迪:共建线上个性化订车实时云渲染方案

近年来&#xff0c;随着5G网络和云计算技术的不断发展&#xff0c;交互式3D实时云看车正在成为一种新的看车方式。与传统的到4S店实地考察不同&#xff0c;消费者可以足不出户&#xff0c;通过网络与终端设备即可实现全方位展示、自选汽车配色、模拟效果、快捷选车并进行个性化…...

yii2项目使用frp https2http插件问题

yii2内网项目&#xff0c;使用frp进行内网穿透&#xff0c;使用 https2http插件把内网服务器http流量转成https&#xff0c;会存在一个问题&#xff1a;当使用 $this->redirect(...) 或 $this->goHome() &#xff08;其实用的也是前者&#xff09;等重定向时&#xff0c;…...

关于 interface{} 会有啥注意事项?下

我们一起来回顾一下上一次说到的 interface{} 可以用来做多态 接口类型分为空接口类型和非空接口类型&#xff0c;他们的底层数据结构不太一样 这里顺便说一下&#xff0c;用来作态需要满足这样的条件&#xff1a; 首先得有父类指针指向子类的对象这个接口还必须是非空接口…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...