开源模型应用落地-chatglm3-6b模型小试-入门篇(一)
一、前言
刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。
在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然而,仅仅掌握理论知识并不能真正帮助我们成长和进步。实践是将理论知识转化为实际技能和经验的关键。
我将引导您以最低的成本运行ChatGLM3-6b模型,让您体验到它带来的美妙特性。
qwen模型教程入口:
开源模型应用落地-qwen模型小试-入门篇(一)_qwen文本分类-CSDN博客
baichuan模型教程入口:
开源模型应用落地-baichuan模型小试-入门篇(一)-CSDN博客
二、术语
2.1. 智谱AI
是由清华大学计算机系技术成果转化而来的公司,致力于打造新一代认知智能通用模型。公司合作研发了双语千亿级超大规模预训练模型GLM-130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎,基于此模型打造了ChatGLM(chatglm.cn)。此外,智谱AI还推出了认知大模型平台Bigmodel.ai,包括CodeGeeX和CogView等产品,提供智能API服务,链接物理世界的亿级用户、赋能元宇宙数字人、成为具身机器人的基座,赋予机器像人一样“思考”的能力。

2.2. ChatGLM3
是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
- 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
- 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
- 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。以上所有权重对学术研究完全开放 ,在填写 问卷 进行登记后亦允许免费商业使用。
三、前置条件
3.1. windows操作系统
3.2. 下载chatglm3-6b模型
从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files
https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files
3.3. 创建虚拟环境&安装依赖
conda create --name chatglm3 python=3.10
conda activate chatglm3
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 sentencepiece accelerate
四、技术实现
4.1. 本地推理
#Tokenizer加载
def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizer
#Model加载
def loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto", trust_remote_code=True).eval()print(model)return model
#推理执行结果如下:
def chat(model, tokenizer, message):try:for response in model.stream_chat(tokenizer, message):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()
4.2. 完整代码
# -*- coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "E:\\model\\chatglm3-6b"def chat(model, tokenizer, message):try:for response in model.stream_chat(tokenizer, message):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto", trust_remote_code=True).eval()#print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()message = "你是谁?"response = chat(model, tokenizer, message)for answer in response:print(answer)
运行结果:

五、附带说明
5.1.ChatGLM3-6B vs Qwen1.5-7B-Chat
1) 推理实现的代码差异
ChatGLM3:
for response in model.stream_chat(tokenizer,message, history)
......
QWen1.5:
generation_kwargs = dict(inputs=model_inputs.input_ids, streamer=streamer)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for response in streamer:
......
2) 对话格式差异
ChatGLM3:
<|system|>
You are a helpful assistant.
<|user|>
我家在广州,很好玩哦
<|assistant|>
广州是一个美丽的城市,有很多有趣的地方可以去。
QWen1.5:
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
我家在广州,很好玩哦<|im_end|>
<|im_start|>assistant
广州是一个美丽的城市,有很多有趣的地方可以去。<|im_end|>
3) 模型参数
| ChatGLM3-6B | QWen1.5-7B-Chat | |
| n_layers | 28 | 32 |
| n_heads | 32 | 32 |
| vocab size | 65,024 | 151,851 |
| sequence length | 8192 | 8192 |
相关文章:
开源模型应用落地-chatglm3-6b模型小试-入门篇(一)
一、前言 刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。 在信息时代…...
C++实现单例模式
#include <iostream> class Singleton { private: static Singleton* instance; // 指向单例实例的指针 Singleton() {} // 私有构造函数 public: // 获取单例对象的唯一全局访问点 static Singleton* getInstance() { if (instance nullpt…...
虚幻UE5智慧城市全流程开发教学
一、背景 这几年,智慧城市/智慧交通/智慧水利等飞速发展,骑士特意为大家做了一个这块的学习路线。 二、这是学习大纲 1.给虚幻UE5初学者准备的智慧城市/数字孪生蓝图开发教程 https://www.bilibili.com/video/BV1894y1u78G 2.UE5数字孪生蓝图开发教学…...
docker的安装及入门指令
目录 一、将docker安装到云服务器步骤 1.更新系统yum版本 2.安装所需依赖 3.添加docker仓库设置(使用的是阿里云) 4.安装docker引擎 5.启动docker并开启自动启动 6. 检查是否安装成功,成功会显示相应版本,否则安装失败 二、docker常用命令 1.从…...
聚能共创下一代智能终端操作系统 软通动力荣膺“OpenHarmony优秀贡献单位”
近日,由开放原子开源基金会指导,以“开源共享未来”为主题的OpenHarmony社区年会在北京成功举办。本次活动汇集OpenHarmony项目群共建单位及生态伙伴等多方力量,旨在对2023年度OpenHarmony年度开源事业全面总结的同时,吸引更多伙伴…...
云服务器ECS租用价格表报价——阿里云
阿里云服务器租用价格表2024年最新,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年,轻量应用服务器2核2G3M带宽轻量服务器一年61元,ECS u1服务器2核4G5M固定带宽199元一年,2核4G4M带宽轻量服务器一年165元12个月,2核…...
光猫桥接模式详细步骤
目录 一、前言 路由模式 (宽带默认) 桥接模式 二、桥接模式步骤 (一)图片记录备份 设备信息图 网络侧信息 远程管理密码 宽带上网设置 (二)桥接模式开始 光猫设置 路由器设置 一、前言 重点&a…...
构建开源可观测平台
企业始终面临着确保 IT 基础设施和应用程序全年可用的压力。现代架构(容器、混合云、SOA、微服务等)的复杂性不断增长,产生大量难以管理的日志。我们需要智能应用程序性能管理 (APM) 和可观察性工具来实现卓越生产并满足可用性和正常运行时间…...
SketchUp Pro 2024 for mac 草图大师 专业的3D建模软件
SketchUp Pro 2024 for Mac是一款功能强大的三维建模软件,适用于Mac电脑。其简洁易用的界面和强大的工具集使得用户可以轻松创建复杂的3D模型。 软件下载:SketchUp Pro 2024 for mac v24.0.483 激活版下载 SketchUp Pro 2024 for Mac支持导入和导出多种文…...
通过 Cookie、Redis共享Session 和 Spring 拦截器技术,实现对用户登录状态的持有和清理(三)
本篇内容对应 “2.4 生成验证码” 小节 和 “4.7 优化登陆模块”小节 视频链接 1 Kaptcha介绍 Kaotcga是一个生成验证码的工具。 你的网站验证码是什么? 在我们这个牛客论坛项目,验证码分为两部分 给用户看的是图片,用户根据图片上显示的…...
学习 Git 基础知识 - 日常开发任务手册
欢迎来到我关于 Git 的综合指南,Git 是一种分布式版本控制系统,已经在软件开发中彻底改变了协作和代码管理方式。 无论你是经验丰富的开发者还是刚开始编程之旅的新手,理解 Git 对于正确掌控代码、高效管理项目和与他人合作至关重要。 在本…...
pip和conda 设置安装源
pip和conda 设置安装源 conda查看 channels添加 channels移除 channelschannels 配置文件 pip查看 index-url添加 index-url移除 index-urlindex-url 配置文件 常用源 conda 查看 channels conda config --show channels添加 channels conda config --add channels https:/…...
数据分析之Logistic回归分析中的【多元有序逻辑回归】
1、定义 多元有序逻辑回归用于分析有序分类因变量与一个或多个自变量之间的关系。有序逻辑回归适用于因变量具有自然排序但没有固定间距的类别,例如疾病严重程度(轻度、中度、重度)或调查问卷中的满意度评分(非常不满意、不满意、…...
路由器拨号失败解决方法
目录 一、遇到问题 二、测试 三、解决方法 (一)路由器先单插wan口设置 (二)mac地址替换 (三)更改路由器DNS 一、遇到问题 1 .在光猫使用桥接模式,由路由器进行拨号的时候,出现…...
Oracle 中 where 和 on 的区别
1.Oracle 中 where 和 on 的区别 on:会先根据on后面的条件进行筛选,条件为真时返回该行,由于on的优先级高于left join,所以left join关键字会把左表中没有匹配的所有行也都返回,然后生成临时表返回,执行优先级高于…...
NLP学习路线总结
自然语言处理(Natural Language Processing,NLP)是人工智能和语言学领域的一部分,它旨在让计算机能够理解、解释和生成人类语言。NLP学习路线可以大致分为以下几个步骤: 1. 基础知识准备 - 计算机科学知识:…...
AI绘图cuda与stable diffusion安装部署始末与避坑
stable diffusion的安装说起来很讽刺,最难的不是stable diffusion,而是下载安装cuda。下来我就来分享一下我的安装过程,失败了好几次,几近放弃。 一、安装cuda 我们都知道cuda是显卡CPU工作的驱动(或者安装官网的解释…...
OpenCv —— cv::VideoCapture设置摄像头图像格式为“MJPEG“
背景 今天恰巧同事有台USB摄像头,她想要在Windows系统下通过OpenCV读取该摄像头宽高为1080x768、帧率为60的视频,用来做图像算法处理。但无奈通过网上OpenCV教程 读取的视频对应尺寸的帧率仅为10帧左右,根本无法满足使用要求。于是作者通过本篇文章介绍如何解决,欢迎交流指…...
Qt事件学习案例
视频链接 https://www.bilibili.com/video/BV18B4y1K7Cs?p7&spm_id_frompageDriver&vd_sourcefa4ef8f26ae084f9b5f70a5f87e9e41bQt5跟着视频做即可,Qt6部分代码需要改动,改动的地方注释有写 素材 百度云 链接:https://pan.baidu.com/s/158j…...
无锡国家集成电路设计中心某公司的单锂小电机直流电机H桥驱动电路
H桥驱动 L9110S是一款直流电机驱动电路,适合单节锂电池应用。输出电流0.4A。价格约3毛。 推荐原因: 某些人应该知道这个地方,大多数人应该不知道这个地方,所以推荐一下。 这个地方去过几次,某公司与某方走的“近”&…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
