数据分析之Logistic回归分析中的【多元有序逻辑回归】
1、定义
-
多元有序逻辑回归用于分析有序分类因变量与一个或多个自变量之间的关系。有序逻辑回归适用于因变量具有自然排序但没有固定间距的类别,例如疾病严重程度(轻度、中度、重度)或调查问卷中的满意度评分(非常不满意、不满意、一般、满意、非常满意)。
-
多元有序逻辑回归基于概率模型,它假设因变量的每个类别与一个潜在的连续变量(或称为对数优势)相关联。这个潜在变量的大小决定了观察到的有序分类结果。模型的目标是估计自变量对潜在变量的影响,以及它们如何影响因变量在不同有序类别之间的概率。
-
因变量的数量为N的有序逻辑回归,可以拆分为N-1 个二分类的Logistic回归模型。只是这N-1个模型中进行logit变换的不是响应变量每个类别的概率,而是响应变量有序取值水平的累积概率。模型需要满足一个非常重要的前提:风险比例假定。
假设因变量为疾病的严重程度:轻、中、重,分别赋值为1、2和3,那么因变量的拆分形式如下:
- 【1】 vs【 2、3】;
- 【1、2】 vs 【3】;
若因变量为4个等级1、2、3、4,那么则有:
- 【1】 vs 【2、3、4】;
- 【1、2】 vs 【3、4】;
- 【1、2、3 】vs 【4】。
知识补充:
- 风险比例假定:
- 自变量对于因变量中相邻有序类别的风险比例(即优势比,Odds Ratio)的影响是一致的。这意味着,自变量对于因变量的每个有序级别之间的风险比例变化是成比例的。
- 即不论响应变量从哪个水平进行切分,拟合的N-1个二分类的logistic回归模型只有截距不同,而各个解释变量的系数均保持一致。
- 而平行线检验可判断模型是否满足风险比例假定,当平行线检验的P值>0.05时(注意:此处为大于0.05,并非小于0.05,根据原假设判断)即满足风险比例假定,那么模型的结果将更加可靠,可以用于解释自变量对因变量有序类别风险比例的影响。若不满足平行线检验,建议使用多元无序逻辑回归进行分析。
- 平行线检验
- 定义:
平行线检验,也称为比例优势假设检验,是在使用有序逻辑回归(包括多元有序逻辑回归)时进行的一个重要步骤。这个假设检验是为了验证模型中的自变量对于因变量的不同类别之间的边界(cut-off points)是否有一致的影响。 - 原假设(H0):
平行线检验的原假设是,所有自变量对于因变量的相邻类别之间的对数优势(log odds)的影响是相同的。换句话说,自变量对于因变量中相邻有序类别的相对风险(odds)的对数是恒定的,即自变量对于对数优势的影响在所有有序类别的边界上是一致的。根据原假设可知,当平行线检验的P值>0.05时接受原假设,即满足风险比例假定。
2、用法
在使用多元有序逻辑回归时,首先需要满足几个条件:
- 因变量是有序的,且类别间存在自然排序。
- 自变量可以是连续的,也可以是分类的。
- 数据应该是独立的,即每个观测值的结果不受其他观测值的影响。
- 自变量之间不存在多重共线性。
- 比例优势假设得到满足,即自变量对因变量的影响在所有有序类别的边界上是一致的。
3、使用场景
多元有序逻辑回归常用于以下场景:
- 医学研究中评估不同因素对疾病严重程度的影响。
- 社会科学中分析个体特征对满意度或态度的影响。
- 市场研究中了解不同因素如何影响消费者的产品评价等级。
相关文章:
数据分析之Logistic回归分析中的【多元有序逻辑回归】
1、定义 多元有序逻辑回归用于分析有序分类因变量与一个或多个自变量之间的关系。有序逻辑回归适用于因变量具有自然排序但没有固定间距的类别,例如疾病严重程度(轻度、中度、重度)或调查问卷中的满意度评分(非常不满意、不满意、…...

路由器拨号失败解决方法
目录 一、遇到问题 二、测试 三、解决方法 (一)路由器先单插wan口设置 (二)mac地址替换 (三)更改路由器DNS 一、遇到问题 1 .在光猫使用桥接模式,由路由器进行拨号的时候,出现…...

Oracle 中 where 和 on 的区别
1.Oracle 中 where 和 on 的区别 on:会先根据on后面的条件进行筛选,条件为真时返回该行,由于on的优先级高于left join,所以left join关键字会把左表中没有匹配的所有行也都返回,然后生成临时表返回,执行优先级高于…...

NLP学习路线总结
自然语言处理(Natural Language Processing,NLP)是人工智能和语言学领域的一部分,它旨在让计算机能够理解、解释和生成人类语言。NLP学习路线可以大致分为以下几个步骤: 1. 基础知识准备 - 计算机科学知识:…...

AI绘图cuda与stable diffusion安装部署始末与避坑
stable diffusion的安装说起来很讽刺,最难的不是stable diffusion,而是下载安装cuda。下来我就来分享一下我的安装过程,失败了好几次,几近放弃。 一、安装cuda 我们都知道cuda是显卡CPU工作的驱动(或者安装官网的解释…...

OpenCv —— cv::VideoCapture设置摄像头图像格式为“MJPEG“
背景 今天恰巧同事有台USB摄像头,她想要在Windows系统下通过OpenCV读取该摄像头宽高为1080x768、帧率为60的视频,用来做图像算法处理。但无奈通过网上OpenCV教程 读取的视频对应尺寸的帧率仅为10帧左右,根本无法满足使用要求。于是作者通过本篇文章介绍如何解决,欢迎交流指…...

Qt事件学习案例
视频链接 https://www.bilibili.com/video/BV18B4y1K7Cs?p7&spm_id_frompageDriver&vd_sourcefa4ef8f26ae084f9b5f70a5f87e9e41bQt5跟着视频做即可,Qt6部分代码需要改动,改动的地方注释有写 素材 百度云 链接:https://pan.baidu.com/s/158j…...

无锡国家集成电路设计中心某公司的单锂小电机直流电机H桥驱动电路
H桥驱动 L9110S是一款直流电机驱动电路,适合单节锂电池应用。输出电流0.4A。价格约3毛。 推荐原因: 某些人应该知道这个地方,大多数人应该不知道这个地方,所以推荐一下。 这个地方去过几次,某公司与某方走的“近”&…...
数据分析 -- numpy
文章目录 numpy库简介简介特点 numpy操作数组创建数组属性数组变更数据计算 numpy库简介 简介 开源的Python库,它提供了高性能的多维数值(numpy.ndarray)计算能力;由“Numerical Python”缩写而来,并且它是Pandas库的…...
开源项目生存现况:xz投毒事件引发的思考与GNU tar维护挑战
(首发地址:学习日记 https://www.learndiary.com/2024/04/xz-tar/) 嗨,大家好!我是来自淘宝网“学习日记小店”的 learndiary,专注于 Linux 服务领域。今天我要和大家谈谈近期备受瞩目的 XZ 供应链投毒事件…...
前端开发语言有哪些
随着互联网的迅猛发展,前端开发已经成为了一个炙手可热的职业。对于初学者来说,了解前端开发所使用的语言是非常重要的。那么,前端开发语言有哪些呢?本文将为您一一介绍。 一、HTML HTML(HyperText Markup Language&…...
速盾:cdn加速https额外收费吗?
CDN(内容分发网络)是一种通过在全球各地部署服务器来提供高速互联网内容传输的技术,它可以加速网站的访问速度,提高用户体验。而HTTPS(超文本传输安全协议)是一种通过加密技术保护网站数据传输安全的协议。…...

【蓝桥杯嵌入式】13届程序题刷题记录及反思
一、题目分析 考察内容: led按键(短按)PWM输出(PA1)串口接收lcd显示 根据PWM输出占空比调节,高频与低频切换 串口接收(指令解析)【中断接收】 2个显示界面 led灯闪烁定时器 二…...
C++类 单例模式
例子 请看如下的类和调用: 在您提供的代码片段中,CPathPlanMan 类使用了一个单例模式,这意味着这个类只需要一个实例,并且提供了全局访问点来获取这个实例。这通常用于控制对一个类实例的访问,尤其是在创建实例代价昂…...

prompt 工程案例
目录 prompt 工程是什么? 案例 vllm 推理加速框架 prompt 工程是什么? prompt:提示词,也就是我们使用网页版输入给大模型的内容就叫 prompt,那什么是 prompt 工程呢? 简单理解其实就是利用编写的 prom…...

燃气管网安全运行监测系统功能介绍
燃气管网,作为城市基础设施的重要组成部分,其安全运行直接关系到居民的生命财产安全和城市的稳定发展。然而,随着城市规模的不断扩大和燃气使用量的增加,燃气管网的安全运行面临着越来越大的挑战。为了应对这些挑战,燃…...

正则表达式(2)
文章目录 专栏导读1、贪婪与非贪婪2、转义匹配 专栏导读 ✍ 作者简介:i阿极,CSDN 数据分析领域优质创作者,专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》,本专栏针对大学生、初级数据分析工程师精…...
xv6源码分析 001
xv6源码分析 001 我们先看看xv6这个项目的基本结构(只看代码部分) 主要就是两个目录kernel 和 user。 user是一些用户程序,也就是我们平时在shell上面执行的命令,每执行一个命令就会创建一个新的用户进程来执行这个命令 在user目…...
JS代码小知识(个人向)
JS 对象转数组 let obj {0:"a",1:"b",length:2 //加上这个就能转了 }; console.log(Array.from(obj)); // ["a", "b"] 数组的拼接 let a ["a","b"] let b ["c","d"] let c [...a , …...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...